editor's blog
Subscribe Now

Sensor Driver? Sensor Fusion?

Not long ago, coincident with Sensors Expo, Freescale announced their new Intelligent Sensing Framework, or ISF. From the initial descriptions I saw, I was frankly a bit confused as to how this is different from a driver and from other sensor fusion solutions. A conversation with Freescale’s Jim McGlasson helped add some color to what’s going on.

As a starting point, we can remind ourselves that a driver is a piece of code running on a host (or AP or whatever) that lets that host access a resource. In the case of a sensor, the driver can poke and prod at the sensor to configure it or retrieve data. The API and other hooks are typically defined by the operating system; this lets the sensor behave in a way that the OS is expecting, and it abstracts the sensor details from the upper layers.

While the ISF is described as providing sensor abstraction, it does not behave like a driver. By definition, the ISF isn’t intended to run on the host: it runs on the sensor.

“How,” you ask, “can code run on a sensor??” The short answer is, “It can’t.” Unless there’s a microcontroller in there. Which there is in Freescale’s “intelligent” sensor line.

Originally, the existence of that microcontroller wasn’t made evident to users, and, even if they knew about it, it wasn’t there for them to program. Its role was to give Freescale a way to take a single sensor and configure it into different products. A classic way of managing different OPNs (ordering part numbers) that can be handled with a single chip.

But, at some point, they opened up the microcontroller, and so this is where the ISF runs. It is particularly intended for systems where there may not be a host and OS; the ISF provides an API and hooks for working with the sensors and other data inputs.

Microcontrollers are increasingly being used as sensor hubs, whether integrated with a sensor or external, both for providing a low-power way of managing sensors without involving the host and as a place to execute sensor and data fusion algorithms. And that’s the ISF’s goal: provide a platform to simplify the creation of systems involving multiple sensors that require some sort of fusion.

If the system also has a host and OS, then a driver would still be needed to access the ISF.

So, details aside, the main point is that the ISF and drivers are separate entities, and you might have one or the other or both. The ISF provides a framework for sensor fusion that’s done below the level of the host. You can find out more in Freescale’s release.

Leave a Reply

featured blogs
May 25, 2023
Register only once to get access to all Cadence on-demand webinars. Unstructured meshing can be automated for much of the mesh generation process, saving significant engineering time and cost. However, controlling numerical errors resulting from the discrete mesh requires ada...
May 24, 2023
Accelerate vision transformer models and convolutional neural networks for AI vision systems with the ARC NPX6 NPU IP, the best processor for edge AI devices. The post Designing Smarter Edge AI Devices with the Award-Winning Synopsys ARC NPX6 NPU IP appeared first on New Hor...
May 8, 2023
If you are planning on traveling to Turkey in the not-so-distant future, then I have a favor to ask....

featured video

Automate PCB P&R Tasks for Designs in Minutes

Sponsored by Cadence Design Systems

Discover how to get a dramatic reduction in design turnaround time by automating your placement, power plane generation, and critical net routing with Cadence® Allegro® X AI technology. Built on and accessed through the Allegro X Design Platform, Allegro X AI reduces P&R tasks from days to minutes with equivalent or higher quality compared with manually designed boards.

Click here for more information

featured contest

Join the AI Generated Open-Source Silicon Design Challenge

Sponsored by Efabless

Get your AI-generated design manufactured ($9,750 value)! Enter the E-fabless open-source silicon design challenge. Use generative AI to create Verilog from natural language prompts, then implement your design using the Efabless chipIgnite platform - including an SoC template (Caravel) providing rapid chip-level integration, and an open-source RTL-to-GDS digital design flow (OpenLane). The winner gets their design manufactured by eFabless. Hurry, though - deadline is June 2!

Click here to enter!

featured chalk talk

Advantech Edge Gateways for Equipment Monitoring
Sponsored by Mouser Electronics and Advantech
One of the biggest challenges with equipment monitoring today includes one critical question: How do I integrate multiple data formats from different devices, equipment, meters, and sensors into my system? In this episode of Chalk Talk, Amelia Dalton chats with Eric Wang from Advantech about how the Advantech WISE-EdgeLink solution can help you navigate the challenges of data collection in edge applications. They also take a closer look at the benefits of the Advantech WISE-EdgeLink smart gateway family and show you how to get started using one of these smart gateways in your next edge application. 
Mar 1, 2023
11,161 views