editor's blog
Subscribe Now

Sensor Driver? Sensor Fusion?

Not long ago, coincident with Sensors Expo, Freescale announced their new Intelligent Sensing Framework, or ISF. From the initial descriptions I saw, I was frankly a bit confused as to how this is different from a driver and from other sensor fusion solutions. A conversation with Freescale’s Jim McGlasson helped add some color to what’s going on.

As a starting point, we can remind ourselves that a driver is a piece of code running on a host (or AP or whatever) that lets that host access a resource. In the case of a sensor, the driver can poke and prod at the sensor to configure it or retrieve data. The API and other hooks are typically defined by the operating system; this lets the sensor behave in a way that the OS is expecting, and it abstracts the sensor details from the upper layers.

While the ISF is described as providing sensor abstraction, it does not behave like a driver. By definition, the ISF isn’t intended to run on the host: it runs on the sensor.

“How,” you ask, “can code run on a sensor??” The short answer is, “It can’t.” Unless there’s a microcontroller in there. Which there is in Freescale’s “intelligent” sensor line.

Originally, the existence of that microcontroller wasn’t made evident to users, and, even if they knew about it, it wasn’t there for them to program. Its role was to give Freescale a way to take a single sensor and configure it into different products. A classic way of managing different OPNs (ordering part numbers) that can be handled with a single chip.

But, at some point, they opened up the microcontroller, and so this is where the ISF runs. It is particularly intended for systems where there may not be a host and OS; the ISF provides an API and hooks for working with the sensors and other data inputs.

Microcontrollers are increasingly being used as sensor hubs, whether integrated with a sensor or external, both for providing a low-power way of managing sensors without involving the host and as a place to execute sensor and data fusion algorithms. And that’s the ISF’s goal: provide a platform to simplify the creation of systems involving multiple sensors that require some sort of fusion.

If the system also has a host and OS, then a driver would still be needed to access the ISF.

So, details aside, the main point is that the ISF and drivers are separate entities, and you might have one or the other or both. The ISF provides a framework for sensor fusion that’s done below the level of the host. You can find out more in Freescale’s release.

Leave a Reply

featured blogs
Jun 18, 2021
It's a short week here at Cadence CFD as we celebrate the Juneteenth holiday today. But CFD doesn't take time off as evidenced by the latest round-up of CFD news. There are several really... [[ Click on the title to access the full blog on the Cadence Community sit...
Jun 17, 2021
Learn how cloud-based SoC design and functional verification systems such as ZeBu Cloud accelerate networking SoC readiness across both hardware & software. The post The Quest for the Most Advanced Networking SoC: Achieving Breakthrough Verification Efficiency with Clou...
Jun 17, 2021
In today’s blog episode, we would like to introduce our newest White Paper: “System and Component qualifications of VPX solutions, Create a novel, low-cost, easy to build, high reliability test platform for VPX modules“. Over the past year, Samtec has worked...
Jun 14, 2021
By John Ferguson, Omar ElSewefy, Nermeen Hossam, Basma Serry We're all fascinated by light. Light… The post Shining a light on silicon photonics verification appeared first on Design with Calibre....

featured video

Reduce Analog and Mixed-Signal Design Risk with a Unified Design and Simulation Solution

Sponsored by Cadence Design Systems

Learn how you can reduce your cost and risk with the Virtuoso and Spectre unified analog and mixed-signal design and simulation solution, offering accuracy, capacity, and high performance.

Click here for more information about Spectre FX Simulator

featured paper

Create Your Own Custom Chip for Less than $10K

Sponsored by Efabless

Imagine what your team could create if you could develop a custom analog/mixed-signal chip for under $10K. Efabless provides a pre-designed carrier chip which includes a RISC-V processor and subsystem along with ten square millimeters of customizable area, bundled together on a wafer shuttle targeting SkyWater's 130nm process and supported by open-source or proprietary tools for just $9,750.

Click to learn more

featured chalk talk

WiFi 6 & 6E: Strengthening Smart Home Enablement

Sponsored by Mouser Electronics and Qorvo

Demands on WiFi are growing exponentially, and our aging standards and technology are struggling to keep up. Luckily, WiFi 6 and 6E represent a leap in WiFi capabilities for our systems. In this episode of Chalk Talk, Amelia Dalton chats with Tony Testa of Qorvo about the ins and outs of WiFi 6 and 6E with their increased speed, capacity, and efficiency.

Click here for more information about Qorvo Wi-Fi® 6 Solution