editor's blog
Subscribe Now

Cache Clunker

We all know that server computing and embedded computing are different for lots of reasons, many of which can be summed up in one word: budget. Memory budget, performance budget, cost budget, etc. In other words, embedded systems have tight budgets, servers (and desktops and laptops) don’t. Much.

But occasionally something whacks you across the head in terms of the difference. Not long ago, there was an announcement out of MIT about a way to disguise memory access patterns for security. The deal is that, even when you’ve taken careful measures to encrypt data and otherwise keep prying eyes from snooping what’s being computed, those eyes can still monitor your memory accesses and learn too much. Hard to imagine, but apparently people way smarter than I am have shown this.

To be clear, this is positioned as an issue for cloud computing, where a set of resources may be handling delicate computing for many unrelated customers; because they share processors or memory or something, there’s the potential for, well, let’s say peeking at your neighbor’s exam paper.

Fundamental to this is the idea that multiple unrelated processes are running, something that doesn’t generally apply to embedded systems. However, if monitoring memory accesses can give away secrets, then that could still occur in an embedded device – its’ just that it might be someone breaking the thing apart and probing rather than some other co-resident process.

The solution proposed was to put an intervening piece of hardware in the memory access path. Each accessed memory address is placed in a tree, and when that memory is accessed, every address along its branch of the tree is accessed also. Then, after that, the address you really wanted is randomly swapped with some other address in the tree so that, the next time you access it, you’re traversing a totally different set of addresses.

In this manner, you’re completely shuffling your memory access patterns, making it hard (impossible?) to tell what’s going on if all you are watching is memory access.

The reason this smacked me on the head was thinking about the amount of work embedded designers go through to align memory carefully so that it packs nicely into the cache, minimizing misses and getting the most bang for each access. I struggle to think what this secure process (called “Ascend”) would do to a well-behaved cache.

Oh, and the other clue that we’re not thinking “embedded” with this? The performance hit is “only” 3-4X. To be fair, this is contrasted with other security ideas that apparently placed a 100X burden on access performance, and there’s no doubt that 3-4 is better than 100. But some embedded designers would give their left… eyeball to pick up 30-50% performance with one step.

I don’t know if there’s any way to map this idea into something more embedded-friendly; it’s intellectually interesting, and I’m not scoffing at its potential in the cloud, but unless I’m missing something (and comment below if I am), I’m not expecting this to come to a printer near me anytime soon. (And, again, to be fair, no one has suggested it should.)

You can find more in their release.

7 thoughts on “Cache Clunker”

  1. Pingback: 123movies
  2. Pingback: jogos friv
  3. Pingback: DMPK Testing
  4. Pingback: iraqi geometry

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

nanoPower Module Extends Battery Life in Space-Constrained Applications

Sponsored by Analog Devices

Designers can now increase battery life and reduce size in space-constrained IoT devices with a power module that features the lowest quiescent current compared to competitive solutions and uSLIC built-in inductor technology that reduces solution size by up to 37%.

Read Now

featured chalk talk

Sensor Technologies Here to Stay: Post-pandemic

Sponsored by Infineon

Today sensor technology has become integral to our everyday lives. And in the future, sensor technology will mean even more than it does today. In this episode of Chalk Talk, Amelia Dalton chats with David Jones from Infineon about the future of sensor technologies and how they are going to impact our lives in the post-pandemic world. They investigate how miniaturization, built-in antennas in-package and the evolution of radar technology have helped usher in a whole new era of sensing technologies and how all of this and more will help us live healthier and happier lives.

Click here for more information about Infineon's sensor technology portfolio