editor's blog
Subscribe Now

QTC Moves to the Screen

Not long ago we looked at Peratech’s QTC technology. You might remember it as a functional ink that’s highly sensitive to pressure. Our focus at the time was how the technology works; designs seemed to be in process at that point.

Shortly after, they announced a touch screen solution. Because of the ink’s sensitivity, they can actually put the touch sensor behind the screen, reducing the cost of the screen itself and getting the electronics out of the way on the edges. They can also make the screens arbitrarily large. But more importantly, the touch layer is no longer in the light path, meaning that it doesn’t absorb any light, meaning that power can be reduced for the same effective light output.

They recommend it in particular for e-paper and OLED screens, although it will work with anything except LCD (which doesn’t like to be pressed). You need to deflect by about a micron for it to register, but it can also measure the amount of deflection, meaning you get a pressure/z-axis component as well as the usual x and y components of the press.

You can find out more in their release.

Leave a Reply

featured blogs
Dec 2, 2022
A picture tells more than a thousand words, so here are some pictures of CadenceLIVE Europe 2023 Academic and Entrepreneur Tracks to tell a story. After two years of absence, finally the Academic Dinner could take place with professors from Lead Institutions and Program Chair...
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Unique AMS Emulation Technology

Sponsored by Synopsys

Learn about Synopsys' collaboration with DARPA and other partners to develop a one-of-a-kind, high-performance AMS silicon verification capability. Please watch the video interview or read it online.

Read the interview online:

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Solving Design Challenges Using TI's Code Free Sensorless BLDC Motor Drivers

Sponsored by Mouser Electronics and Texas Instruments

Designing systems with Brushless DC motors can present us with a variety of difficult design challenges including motor deceleration, reliable motor startup and hardware complexity. In this episode of Chalk Talk, Vishnu Balaraj from Texas Instruments and Amelia Dalton investigate two new solutions for BLDC motor design that are code free, sensorless and easy to use. They review the features of the MCF8316A and MCT8316A motor drivers and examine how each of these solutions can make your next BLDC design easier than ever before.

Click here for more information about Texas Instruments MCF8361A Sensorless FOC 3-Phase BLDC Driver