editor's blog
Subscribe Now

Antenna Tuning Without MEMS

Quite some time ago, we reported on WiSpry, a MEMS company that was using its technology to switch capacitors so that the antenna tuning can be optimized and changed in real time as conditions and needs change.

Much more recently, a new solution was announced based on collaboration between Taoglas, who makes antenna assemblies, and Peregrine, who produces an array of digitally-switchable capacitors (amongst other things). They’ve combined the two into a module that can fit into phones and other devices like automobile telematics and patient monitoring devices that have to be small and yet communicate afar. You might think this sounds just like what WiSpry is doing, but, while they’re attacking the same basic problem, their solutions are very different.

Peregrine’s capacitors aren’t actuated by MEMS elements; they’re switched electronically using Peregrine’s UltraCMOS process, which relies on silicon-on-sapphire technology to provide good RF performance. So they’re purely electrical where WiSpry (and also Cavendish Kinetics) is electromechanical.

So which one is better? I asked what the benefit of the electrical version is, and I can oversimplify the answer as being, “We can actually produce ours reliably.” (They didn’t articulate that in a snarky fashion, to be clear… Yeah, I’m sexing it up to keep your attention…) Which suggests, of course, that MEMS makers can’t.

So I asked both WiSpry and Cavendish Kinetics about this; I can’t imagine either one of them saying, “Oh yeah, our production sucks!” even if it were true (and, for the record, I’m not saying it is). But it’s only right to let them respond, so I checked in. Cavendish Kinetics’ Marketing and Biz Dev EVP Larry Morrell said that they have real customer designs in the works, but that they haven’t reached production status yet.

But significantly, he said, “Based on our collective management experience (and the management team has done all this before), we are on a normal yield learning curve for a CMOS process.  So we are tracking to our plan and the yields are improving monthly.  Our current yield levels are well above minimum requirements to be able to predict fab output to support customers.” Carefully worded; it suggests to me that yields aren’t great today (a threshold of predicting output simply means stable, not high) – but if they can support customers without going out of business, that’s all that matters to customers. They expect production this year and capacity in the 10s of millions per month by the end of the year. [Update note: more clarification on Cavendish Kinetics yields can be found here.]

I did not receive a reply from WiSpry by “print” time.

You can find out more about the Peregrine/Taoglas offering in their release.

Leave a Reply

featured blogs
Sep 23, 2020
The great canning lid shortage of 75, the great storm of 87, the great snow of 54, the great freeze of 48... will we one day be talking about the great toilet roll shortage of 2020?...
Sep 23, 2020
CadenceLIVE 2020 India, our first digital conference held on 9-10 September and what an event it was! With 75 technical paper presentations, four keynotes, a virtual exhibition area, and fun... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 22, 2020
I am a child of the 80s.  I grew up when the idea of home computing was very new.  My first experience of any kind of computer was an Apple II that my Dad brought home from work. It was the only computer his company possessed, and every few weeks he would need to cr...
Sep 18, 2020
[From the last episode: We put the various pieces of a memory together to show the whole thing.] Before we finally turn our memory discussion into an AI discussion, let'€™s take on one annoying little detail that I'€™ve referred to a few times, but have kept putting off. ...

Featured Video

Texas Instruments: Pushing Power Further

Sponsored by Texas Instruments

Power is all around us. Every connection, every invention begins with power. Watch this short video to see how we are pushing the limits of power management.

Explore our power density portfolio

Featured Paper

Helping physicians achieve faster, more accurate patient diagnoses with molecular test technology

Sponsored by Texas Instruments

Point-of-care molecular diagnostics (PoC) help physicians achieve faster, more accurate patient diagnoses and treatment decisions. This article breaks down how molecular test technology works and the building blocks for a PoC molecular diagnostics analyzer sensor front end system.

Read the Article

Featured Chalk Talk

Rail Data Connectivity

Sponsored by Mouser Electronics and TE Connectivity

The rail industry is undergoing a technological revolution right now, and Ethernet connectivity is at the heart of it. But, finding the right interconnect solutions for high-reliability applications such as rail isn’t easy. In this episode of Chalk Talk, Amelia Dalton chats with Egbert Stellinga from TE Connectivity about TE’s portfolio of interconnect solutions for rail and other reliability-critical applications.

Click here for more information about TE Connectivity EN50155 Managed Ethernet Switches