editor's blog
Subscribe Now

Antenna Tuning Without MEMS

Quite some time ago, we reported on WiSpry, a MEMS company that was using its technology to switch capacitors so that the antenna tuning can be optimized and changed in real time as conditions and needs change.

Much more recently, a new solution was announced based on collaboration between Taoglas, who makes antenna assemblies, and Peregrine, who produces an array of digitally-switchable capacitors (amongst other things). They’ve combined the two into a module that can fit into phones and other devices like automobile telematics and patient monitoring devices that have to be small and yet communicate afar. You might think this sounds just like what WiSpry is doing, but, while they’re attacking the same basic problem, their solutions are very different.

Peregrine’s capacitors aren’t actuated by MEMS elements; they’re switched electronically using Peregrine’s UltraCMOS process, which relies on silicon-on-sapphire technology to provide good RF performance. So they’re purely electrical where WiSpry (and also Cavendish Kinetics) is electromechanical.

So which one is better? I asked what the benefit of the electrical version is, and I can oversimplify the answer as being, “We can actually produce ours reliably.” (They didn’t articulate that in a snarky fashion, to be clear… Yeah, I’m sexing it up to keep your attention…) Which suggests, of course, that MEMS makers can’t.

So I asked both WiSpry and Cavendish Kinetics about this; I can’t imagine either one of them saying, “Oh yeah, our production sucks!” even if it were true (and, for the record, I’m not saying it is). But it’s only right to let them respond, so I checked in. Cavendish Kinetics’ Marketing and Biz Dev EVP Larry Morrell said that they have real customer designs in the works, but that they haven’t reached production status yet.

But significantly, he said, “Based on our collective management experience (and the management team has done all this before), we are on a normal yield learning curve for a CMOS process.  So we are tracking to our plan and the yields are improving monthly.  Our current yield levels are well above minimum requirements to be able to predict fab output to support customers.” Carefully worded; it suggests to me that yields aren’t great today (a threshold of predicting output simply means stable, not high) – but if they can support customers without going out of business, that’s all that matters to customers. They expect production this year and capacity in the 10s of millions per month by the end of the year. [Update note: more clarification on Cavendish Kinetics yields can be found here.]

I did not receive a reply from WiSpry by “print” time.

You can find out more about the Peregrine/Taoglas offering in their release.

Leave a Reply

featured blogs
Jul 6, 2020
If you were in the possession of one of these bodacious beauties, what sorts of games and effects would you create using the little scamp?...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: DesignWare® Foundation IP

Sponsored by Synopsys

Join Prasad Saggurti for an update on Synopsys’ DesignWare Foundation IP, including the world’s fastest TCAMs, widest-voltage GPIOs, I2C & I3C IOs, and LVDS IOs. Synopsys Foundation IP is silicon-proven in 7nm in more than 500,000 customer wafers, and 5nm is in development.

Click here for more information about DesignWare Foundation IP: Embedded Memories, Logic Libraries & GPIO

Featured Paper

Cryptography: A Closer Look at the Algorithms

Sponsored by Maxim Integrated

Get more details about how cryptographic algorithms are implemented and how an asymmetric key algorithm can be used to exchange a shared private key.

Click here to download the whitepaper

Featured Chalk Talk

Improving Battery-Life with Ultra Low-Power Processors

Sponsored by Mouser Electronics and NXP

Battery life is critical in today’s mobile device designs, and designing-in ever-larger batteries causes all sorts of awkward compromises. The best strategy is to lower power consumption, and the processor is a great place to start. In this episode of Chalk Talk, Amelia Dalton chats with Nik Jedrzejewski of NXP about the new NXP 7ULP, and how it will help you cut power consumption in your mobile design.

Click here for more information about NXP Semiconductors i.MX 8M Mini Applications Processors