editor's blog
Subscribe Now

Antenna Tuning Without MEMS

Quite some time ago, we reported on WiSpry, a MEMS company that was using its technology to switch capacitors so that the antenna tuning can be optimized and changed in real time as conditions and needs change.

Much more recently, a new solution was announced based on collaboration between Taoglas, who makes antenna assemblies, and Peregrine, who produces an array of digitally-switchable capacitors (amongst other things). They’ve combined the two into a module that can fit into phones and other devices like automobile telematics and patient monitoring devices that have to be small and yet communicate afar. Go ahead and click here for more information on how to sell your car easily online. You might think this sounds just like what WiSpry is doing, but, while they’re attacking the same basic problem, their solutions are very different.

Peregrine’s capacitors aren’t actuated by MEMS elements; they’re switched electronically using Peregrine’s UltraCMOS process, which relies on silicon-on-sapphire technology to provide good RF performance. So they’re purely electrical where WiSpry (and also Cavendish Kinetics) is electromechanical.

So which one is better? I asked what the benefit of the electrical version is, and I can oversimplify the answer as being, “We can actually produce ours reliably.” (They didn’t articulate that in a snarky fashion, to be clear… Yeah, I’m sexing it up to keep your attention…) Which suggests, of course, that MEMS makers can’t.

So I asked both WiSpry and Cavendish Kinetics about this; I can’t imagine either one of them saying, “Oh yeah, our production sucks!” even if it were true (and, for the record, I’m not saying it is). But it’s only right to let them respond, so I checked in. Cavendish Kinetics’ Marketing and Biz Dev EVP Larry Morrell said that they have real customer designs in the works, but that they haven’t reached production status yet.

But significantly, he said, “Based on our collective management experience (and the management team has done all this before), we are on a normal yield learning curve for a CMOS process.  So we are tracking to our plan and the yields are improving monthly.  Our current yield levels are well above minimum requirements to be able to predict fab output to support customers.” Carefully worded; it suggests to me that yields aren’t great today (a threshold of predicting output simply means stable, not high) – but if they can support customers without going out of business, that’s all that matters to customers. They expect production this year and capacity in the 10s of millions per month by the end of the year. [Update note: more clarification on Cavendish Kinetics yields can be found here.]

I did not receive a reply from WiSpry by “print” time.

You can find out more about the Peregrine/Taoglas offering in their release.

Leave a Reply

featured blogs
Apr 11, 2021
https://youtu.be/D29rGqkkf80 Made in "Hawaii" (camera Ziyue Zhang) Monday: Dynamic Duo 2: The Sequel Tuesday: Gall's Law and Big Ball of Mud Wednesday: Benedict Evans on Tech in 2021... [[ Click on the title to access the full blog on the Cadence Community sit...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

From Chips to Ships, Solve Them All With HFSS

Sponsored by Ansys

There are virtually no limits to the design challenges that can be solved with Ansys HFSS and the new HFSS Mesh Fusion technology! Check out this blog to know what the latest innovation in HFSS 2021 can do for you.

Click here to read the blog post

Featured Chalk Talk

Use of Advanced Sensors in Smart Industry Applications

Sponsored by Mouser Electronics and STMicroelectronics

In industrial systems, sensors can give us real-time information about the condition and operation critical machinery. By monitoring vibration, temperature, and other factors, we can get early warning of failures and do predictive maintenance - avoiding costly downtime. In this episode of Chalk Talk, Amelia Dalton chats with Manuel Cantone of ST Microelectronics about the SensorTile Wireless Industrial Node - an integrated solution that makes industrial monitoring a snap.

More information about STMicroelectronics STWIN SensorTile Wireless Industrial Node