editor's blog
Subscribe Now

A Move Towards a Magnetic MEMS Relay

Relays might seem amongst the most mundane of components, and yet even they are getting a miniaturization upgrade with the help of MEMS technology. Of course, you might reasonably ask, since reed relays are already mechanical devices, why not simply make them smaller? And there’s a very specific reason: The reed is encased in glass, and that glass is fused onto the leads, which have rhodium or ruthenium or iridium on the contacts. That fusing process is hot, and if you shrink the relay too much, that heat gets too near the contacts and the metal melts.

So you’re stuck with something bigger than you might want. Which suggests a MEMS alternative. And the obvious first approach would be electrostatic. Which, being the obvious first approach, has been tried. And, according to Coto, it was beset with issues, most notably stiction. In case you haven’t run into stiction, it’s a situation where, in this case, some sort of cantilever or see-saw structure gets stuck in a closed position due to low-level forces at the tip. An always-closed relay isn’t of much value. Evidently, a couple of companies have already gone out of business trying this.

So Coto is working its way towards a magnetically-actuated relay. Only they’re taking it one step at a time, starting with the switch only, which they call their Redrock switch. It’s a magnetically-actuated switch, so you essentially supply the magnet separately.

Where, you might wonder, might this be useful? They listed a few examples where you would not want an integrated actuator:

  • A brake fluid level sensor in a car: you float the magnet in the fluid and put several sensors along the fluid reservoir column so that, as the magnet floats down, you can get advance warning that the level is dropping. With a non-MEMS approach, the sensors in this “ladder” need to be far apart so they respond independently – meaning you need a deeper reservoir. By using MEMS, the whole assembly can be made smaller.
  • A switch inside some assembly where gases or liquids are flowing; you can actuate the switch from outside with a magnet.
  • A “capsule endoscope” is a small diagnostic “pill” that tours your insides, but it might be 18 months or so between the time it’s shipped from the factory until it’s actually used – you don’t want the battery to die during that time. So a magnet can be put in the enclosing box, keeping a switch open. Only when the box is opened and the magnet is no longer present will the unit turn on.

The unit is a surface-mount device formed by etching a ceramic substrate using X-ray lithography, seeding with a titanium seed layer, and then plating with nickel/iron. On a separate wafer, copper walls are grown; this “housing” is placed over the switch in a vacuum with a gold/gold seal that results in a perfectly hermetic enclosure.

The actual switch consists of two metal blocks and a cantilever that is attached to one and lies over the other. The two blocks are of opposite magnetic polarity and concentrate the magnetic flux in the gap between the cantilever tip and the block below it, bringing the cantilever tip into contact when actuated. The result is directional: you have to approach from the right angle with the magnet for it to work (or, at the very least, sensitivity is greatest from certain angles).

Why might directionality help? Well, consider the case of an insulin pump where there was a switch in the electronics and a magnet in the disposable insulin reservoir. Apparently there was a case where a stray magnetic field from an electric drill caused insulin to be injected at the wrong time. So the directionality provides a measure of selectivity, helping to make sure that the switch isn’t necessarily moved from any old magnetic field.

The next step is to integrate a magnet into a full-on relay. But apparently this isn’t trivial: you have to print a big enough magnet. They’re looking at proof-of-concept for this by the end of the year, with production a couple years out (assuming it works, of course).

You can find out more on their website.

Leave a Reply

featured blogs
Dec 8, 2023
Read the technical brief to learn about Mixed-Order Mesh Curving using Cadence Fidelity Pointwise. When performing numerical simulations on complex systems, discretization schemes are necessary for the governing equations and geometry. In computational fluid dynamics (CFD) si...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Universal Verification Methodology Coverage for Bluespec RISC-V Cores

Sponsored by Synopsys

This whitepaper explains the basics of UVM functional coverage for RISC-V cores using the Google RISCV-DV open-source project, Synopsys verification solutions, and a RISC-V processor core from Bluespec.

Click to read more

featured chalk talk

IoT Data Analysis at the Edge
No longer is machine learning a niche application for electronic engineering. Machine learning is leading a transformative revolution in a variety of electronic designs but implementing machine learning can be a tricky task to complete. In this episode of Chalk Talk, Amelia Dalton and Louis Gobin from STMicroelectronics investigate how STMicroelectronics is helping embedded developers design edge AI solutions. They take a closer look at the benefits of STMicroelectronics NanoEdge-AI® Studio and  STM32Cube.AI and how you can take advantage of them in your next design. 
Jun 28, 2023
20,151 views