editor's blog
Subscribe Now

Mag Sensor for Watch Compass

Continuing with the series of Sensors Expo conversations, I had a chance to discuss a couple of topics with Memsic (one of which we’ll talk about in a future entry). Today we’ll look at their magnetic sensor, which relies on AMR – anisotropic magneto-resistance.

Currents generate magnetic fields, but with AMR, the difference in direction by the field generated by current and some external field will impact the resistance of the material. Current is generally run at an angle in stripes of material, resulting in a so-called “barber pole” look. The good news about this technology is that it can read quickly – about 7 ms.

One of the challenges of any magnetometer for use in a compass is that you’re trying to sense the direction of a 200-mG field in an environment of magnetic fields that can be on the order of 4-16 G. So you have to “center” the measurement so that you can detect this small signal within the environment that threatens to overwhelm it. This centering, on the other hand, gives you more flexibility on where to place the magnet, since proximity to large anomalies is less detrimental.

In a new 2D mag sensor recently released, they’re targeting things like watches, so power has to be conserved. The problem is that the magnetized material in the barber pole can gradually lose its magnetization as dipoles lose their alignment. So you need to realign things occasionally – sort of like running a comb through it to straighten it all out.

Now, you could do that automatically, but it takes power. So instead, they have a set/reset function that sets the field and then reverses the field. This lets them re-center the zero point in addition to refreshing the magnet. But this has to be done manually (although I suppose it could be handled by the system integrator – perhaps hitting the “compass” button could first execute a refresh before measuring, which the user would never know).

The other thing they’re doing differently with this device is giving it a longer lifetime. Phones come and go, and historically, mag sensors have had commensurate lifetimes. But for non-phone system makers, it can be frustrating to evaluate a sensor and, when you’re finally ready to go into production or when you’re extending production, to find out that it’s no longer available. So this device will be kept around longer than typical fleeting phone lifetimes.

You can find out more in their announcement.

Leave a Reply

featured blogs
Dec 17, 2018
If row-based placement is a topic that interests you, you might have read our post from the last week . If you haven'€™t read it yet, I'€™d highly recommend it for its focus on the need and benefits of... [[ Click on the title to access the full blog on the Cadence Commu...
Dec 13, 2018
In November, we continued our mobile updates to the website, released a couple of new content experiences, and made placing sample requests even easier. Read more below on these and the rest of the major updates to Samtec.com for November 2018. Continued Improvements to our M...
Dec 12, 2018
The possibilities for IoT devices, much like the internet itself, are endless. But with all of those possibilities comes risks....
Nov 14, 2018
  People of a certain age, who mindfully lived through the early microcomputer revolution during the first half of the 1970s, know about Bill Godbout. He was that guy who sent out crudely photocopied parts catalogs for all kinds of electronic components, sold from a Quon...