editor's blog
Subscribe Now

Converging by Construction

Chip design has always consisted of a series of loops. Do something, check the effects, fix things, check again, and hopefully converge on a solution. A big part of the focus of EDA tools developers has been to make each of these passes faster and reduce the number of passes.

One of the critical things that has to be checked at the end of each layout pass is that the layout meets the design rules. A couple years ago, the DRC-checking part started moving to real-time with Mentor’s Calibre tool, which dominates DRC checking. It started with Mentor’s own InRoute (for digital) and then RealTime, for integration into custom layout tools like Laker (was Springsoft, now Synopsys). This meant that DRC rules were checked immediately with each layout change, eliminating one aspect of the long loop.

Not comprehended in that, however, was the electrical aspects of layout – the Rs and Cs (mostly parasitic) that accrue as you lay your chip out. Cadence has just announced a change to that. They call it “electrically-aware design,” and it moves the extraction and parts of verification from the end of the loop to “real-time.” You can feed forward voltage/current points from circuit simulation and monitor as you do layout; you can establish constraints and track adherence; you can get warnings when something you’ve done in layout creates an electromagnetic issue. You push a polygon and the tools recalculate the parasitics and update the performance numbers immediately, alerting if necessary.

The big win here is that it allows designers to “converge by construction” instead of doing an entire layout and then finding all the issues. It also lets designers push the edge a bit more. If you’re tight on your schedule (who isn’t?), then you might over-design to get things to pass – you’re not then going to go back and “back things off” until they fail in order to optimize since that will take too long. But with the real-time view of the impact of layout, you can see if you’ve over-designed and then make immediate adjustments to achieve a better balance.

It’s a simple concept with interesting potential for custom and analog designers. (And if you’re wondering about real-time DRC, Cadence already has that in place as well.)

You can find more details in their release.

Leave a Reply

featured blogs
Jan 17, 2022
Today's interview features Dajana Danilovic, an application engineer based near Munich, Germany. In this video, Dajana shares about her pathway to becoming an engineer, as well as the importance of... [[ Click on the title to access the full blog on the Cadence Community sit...
Jan 13, 2022
See what's behind the boom in AI applications and explore the advanced AI chip design tools and strategies enabling AI SoCs for HPC, healthcare, and more. The post The Ins and Outs of AI Chip Design appeared first on From Silicon To Software....
Jan 12, 2022
In addition to sporting a powerful processor and supporting Bluetooth wireless communications, Seeed's XIAO BLE Sense also boasts a microphone and a 6DOF IMU....

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

MAX22005 Universal Analog Input Enables Flexible Industrial Control Systems

Sponsored by Analog Devices

This application note provides information to help system engineers develop extremely precise, highly configurable, multi-channel industrial analog input front-ends by utilizing the MAX22005.

Click here to read more

featured chalk talk

Seamless Ethernet to the Edge with 10BASE-T1L Technology

Sponsored by Mouser Electronics and Analog Devices

In order to keep up with the breakneck speed of today’s innovation in Industry 4.0, we need an efficient way to connect a wide variety of edge nodes to the cloud without breaks in our communication networks, and with shorter latency, lower power, and longer reach. In this episode of Chalk Talk, Amelia Dalton chats with Fiona Treacy from Analog Devices about the benefits of seamless ethernet and how seamless ethernet’s twisted single pair design, long reach and power and data over one cable can solve your industrial connectivity woes.

Click here for more information about Analog Devices Inc. ADIN1100 10BASE-T1L Ethernet PHY