editor's blog
Subscribe Now

Converging by Construction

Chip design has always consisted of a series of loops. Do something, check the effects, fix things, check again, and hopefully converge on a solution. A big part of the focus of EDA tools developers has been to make each of these passes faster and reduce the number of passes.

One of the critical things that has to be checked at the end of each layout pass is that the layout meets the design rules. A couple years ago, the DRC-checking part started moving to real-time with Mentor’s Calibre tool, which dominates DRC checking. It started with Mentor’s own InRoute (for digital) and then RealTime, for integration into custom layout tools like Laker (was Springsoft, now Synopsys). This meant that DRC rules were checked immediately with each layout change, eliminating one aspect of the long loop.

Not comprehended in that, however, was the electrical aspects of layout – the Rs and Cs (mostly parasitic) that accrue as you lay your chip out. Cadence has just announced a change to that. They call it “electrically-aware design,” and it moves the extraction and parts of verification from the end of the loop to “real-time.” You can feed forward voltage/current points from circuit simulation and monitor as you do layout; you can establish constraints and track adherence; you can get warnings when something you’ve done in layout creates an electromagnetic issue. You push a polygon and the tools recalculate the parasitics and update the performance numbers immediately, alerting if necessary.

The big win here is that it allows designers to “converge by construction” instead of doing an entire layout and then finding all the issues. It also lets designers push the edge a bit more. If you’re tight on your schedule (who isn’t?), then you might over-design to get things to pass – you’re not then going to go back and “back things off” until they fail in order to optimize since that will take too long. But with the real-time view of the impact of layout, you can see if you’ve over-designed and then make immediate adjustments to achieve a better balance.

It’s a simple concept with interesting potential for custom and analog designers. (And if you’re wondering about real-time DRC, Cadence already has that in place as well.)

You can find more details in their release.

Leave a Reply

featured blogs
Sep 22, 2021
3753 Cruithne is a Q-type, Aten asteroid in orbit around the Sun in 1:1 orbital resonance with the Earth, thereby making it a co-orbital object....
Sep 21, 2021
Placing component leads accurately as per the datasheet is an important task while creating a package footprint symbol. As the pin pitch goes down, the size and location of the component lead play a... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Accurate Full-System Thermal 3D Analysis

Sponsored by Cadence Design Systems

Designing electronics for the data center challenges designers to minimize and dissipate heat. Electrothermal co-simulation requires system components to be accurately modeled and analyzed. Learn about a true 3D solution that offers full system scalability with 3D analysis accuracy for the entire chip, package, board, and enclosure.

Click here for more information about Celsius Thermal Solver

featured paper

Keep Your System Up and Running With a Single Supercapacitor

Sponsored by Maxim Integrated (now part of Analog Devices)

This design solution presents a novel solution for backing up system power in both battery and line-powered systems. The elegant architecture runs from a single supercapacitor, provides a tightly regulated 5V output at up to 3A, and features 94% efficiency.

Click to read more

featured chalk talk

Security Regulations Drive Requirements

Sponsored by Mouser Electronics and Silicon Labs

IoT Security certification schemes can be complex, but security identities and security certification inheritance can make this aspect of your IoT design quite a bit easier. In this episode of Chalk Talk, Amelia Dalton chats with Mike Dow from Silicon Labs about the current state of global security regulations, the difference between physical and logical attacks, and how Silicon Labs SoCs and modules can help you solve the security demands of your next design.

Click here for more information about Silicon Labs EFR32xG21B SoC & xGM210P Modules with Secure Vault