editor's blog
Subscribe Now

Sensing the Turn

This is yet another note regarding the innumerable sensors on display at the recent Sensors Expo. But rather than jumping straight in, let’s explore a problem: one akin to “shaft encoding.”

Those of you controlling precision motors and such know far better than I do about keeping track of the rotating shaft of the motor. By tracking marks on the shaft, the electronics can keep track of the position of the shaft (not to mention speed and other related parameters).

But can we apply that to, say, a steering wheel to remove the mechanical linkages? After all, a steering wheel is the same thing, only your hands are the motor. So, in theory, it should work. But there’s a catch: When the power goes off, the system loses its mind. So when you power back on, the system doesn’t know where the steering wheel was left last time it was touched.

You could suggest that a piece of the electronics remain powered on (if low enough power) to keep track even when the motor is off. But if you change the battery, or if Jr. Samples decides to apply the skills he learned on that burned out ol’ 52 Chevy pickup in the back 40 and disconnects the battery, then the system loses its mind again. So when the car starts up, it’s like it’s waking from a bad dream and not knowing where it is.

So simple shaft encoding won’t work; we need something that persists with no power. That would suggest a magnet. For instance, you could place a magnet on the shaft and then detect which direction the magnet is facing. Or put a magnet around the shaft and put the sensor on the shaft. But that only works for applications that use at most one turn. That’s certainly not the case for your grandfather’s Oldsmobile, where a simple lane change required 20 turns of the wheel.

So you can add translation to the rotation: put a thread on the shaft and have either the magnet or the sensor ride on a carrier that moves along the thread. So as you execute multiple turns of the wheel, the carrier slides up and down the shaft (rather than rotating with the shaft). We’ve now translated the multiple rotations into a linear distance, and the strength of the sensed magnetic field can tell us how far we’ve traveled. And it will work when the car starts.

This is the approach that AMS has taken on the AS5410 “absolute position” sensor they had on display. Specifically, they put the magnet on the carrier and use a 3D Hall-effect sensor in a fixed position. The thing that apparently makes this a first is that the sensor can reject stray fields using differential techniques. This can actually mean using several magnetic sensors, so it’s a bit more complicated than my simplistic description… but then again, most things are.

You can find out more info here.

Leave a Reply

featured blogs
Dec 8, 2023
Read the technical brief to learn about Mixed-Order Mesh Curving using Cadence Fidelity Pointwise. When performing numerical simulations on complex systems, discretization schemes are necessary for the governing equations and geometry. In computational fluid dynamics (CFD) si...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

Peltier Modules
Do you need precise temperature control? Does your application need to be cooled below ambient temperature? If you answered yes to either of these questions, a peltier module may be the best solution for you. In this episode of Chalk Talk, Amelia Dalton chats with Rex Hallock from CUI Devices about the limitations and unique benefits of peltier modules, how CUI Devices’ arcTEC™ structure can make a big difference when it comes to thermal stress and fatigue of peltier modules, and how you can get started using a peltier module in your next design.
Jan 3, 2023