editor's blog
Subscribe Now

Sensing the Turn

This is yet another note regarding the innumerable sensors on display at the recent Sensors Expo. But rather than jumping straight in, let’s explore a problem: one akin to “shaft encoding.”

Those of you controlling precision motors and such know far better than I do about keeping track of the rotating shaft of the motor. By tracking marks on the shaft, the electronics can keep track of the position of the shaft (not to mention speed and other related parameters).

But can we apply that to, say, a steering wheel to remove the mechanical linkages? After all, a steering wheel is the same thing, only your hands are the motor. So, in theory, it should work. But there’s a catch: When the power goes off, the system loses its mind. So when you power back on, the system doesn’t know where the steering wheel was left last time it was touched.

You could suggest that a piece of the electronics remain powered on (if low enough power) to keep track even when the motor is off. But if you change the battery, or if Jr. Samples decides to apply the skills he learned on that burned out ol’ 52 Chevy pickup in the back 40 and disconnects the battery, then the system loses its mind again. So when the car starts up, it’s like it’s waking from a bad dream and not knowing where it is.

So simple shaft encoding won’t work; we need something that persists with no power. That would suggest a magnet. For instance, you could place a magnet on the shaft and then detect which direction the magnet is facing. Or put a magnet around the shaft and put the sensor on the shaft. But that only works for applications that use at most one turn. That’s certainly not the case for your grandfather’s Oldsmobile, where a simple lane change required 20 turns of the wheel.

So you can add translation to the rotation: put a thread on the shaft and have either the magnet or the sensor ride on a carrier that moves along the thread. So as you execute multiple turns of the wheel, the carrier slides up and down the shaft (rather than rotating with the shaft). We’ve now translated the multiple rotations into a linear distance, and the strength of the sensed magnetic field can tell us how far we’ve traveled. And it will work when the car starts.

This is the approach that AMS has taken on the AS5410 “absolute position” sensor they had on display. Specifically, they put the magnet on the carrier and use a 3D Hall-effect sensor in a fixed position. The thing that apparently makes this a first is that the sensor can reject stray fields using differential techniques. This can actually mean using several magnetic sensors, so it’s a bit more complicated than my simplistic description… but then again, most things are.

You can find out more info here.

Leave a Reply

featured blogs
Mar 23, 2023
Watch this webinar and learn how to boost CFD productivity, consistency, and reliability across your organization with Python programming and scripting for Fidelity! Increasingly complex geometries and ever larger simulations emphasize the need for more automation in fluid dy...
Mar 23, 2023
Explore AI chip architecture and learn how AI's requirements and applications shape AI optimized hardware design across processors, memory chips, and more. The post Why AI Requires a New Chip Architecture appeared first on New Horizons for Chip Design....
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

EdgeLock® Secure Element & Secure Authenticator
Today’s IoT designs demand comprehensive security implementation, but incorporating a robust security solution in your design can be a complicated and time-consuming process. In this episode of Chalk Talk, Amelia Dalton and Antje Schutz from NXP explore NXP’s EdgeLock Secure Element and Secure Authenticator Solution. They examine how this flexible, future-proof and easy to deploy solution can be a great fit for a variety of IoT designs.
Sep 8, 2022