editor's blog
Subscribe Now

Extreme Compilers for Extreme Architectures

ACE calls them “extreme architectures.” These are the processors that your mother told you to avoid because they’re just too darn hard to support. You can come up with the niftiest hardware features, but who’s going to figure out how to turn C code into something that will take advantage of them?

Well, ACE would say, “Don’t listen to your mother.” Their CoSy tool (I keep wanting to pronounce this “Co-Sigh,” you know, kind of like when you both lay back and realize that you both have something you need to talk about… but actually, ACE pronounces it “cozy”…) can take bizarre architectures and help you generate a compiler than optimizes the code it generates from a C program.

Where do you find these processors? In those dark alleys your mother told you to avoid? Perhaps… There might be one in that headset that that shady character is wearing. Don’t ask to take it apart and check; take our word for it.

But deeply-embedded processors that look nothing like the kind your mother likes, resembling them only in that they run code; they are found in the dark recesses of systems where every cycle counts for very specific functions. Like audio. Or video or communications or… well, your imagination is the limit.

Down there, you can sneer at power-of-two bit widths. You want precisely 11 bits? 17 bits? 19 bits? (These are prime examples…) You can do it, and CoSy will help you produce a compiler that allows a C program to use that data. You can also set custom alignment.

And the supported architectures don’t have to be on some “Here are the supported bizarre architectures”  list. If you build your own via ARC (now Synopsys) or Tensilica (now Cadence), for example, you can still use CoSy to generate the compiler.

You can find out more about their latest edition in their announcement.

Leave a Reply

featured blogs
Oct 27, 2021
ASIC hardware verification is a complex process; explore key challenges and bug hunting, debug, and SoC verification solutions to satisfy sign-off requirements. The post The Quest for Bugs: The Key Challenges appeared first on From Silicon To Software....
Oct 27, 2021
Cadence was recently ranked #7 on Newsweek's Most Loved Workplaces list for 2021 and #17 on Fortune's World's Best Workplaces list. Cadence received top recognition among thousands of other companies... [[ Click on the title to access the full blog on the Cadence Community s...
Oct 20, 2021
I've seen a lot of things in my time, but I don't think I was ready to see a robot that can walk, fly, ride a skateboard, and balance on a slackline....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

What are V³Link SerDes?

Sponsored by Texas Instruments

V³Link ICs are ultra-low latency SerDes that aggregate video, clock, control and GPIO data into a single-wire bidirectional bridge between industry-standard interfaces. Vision-based designs can use V³Link devices to achieve higher resolution, extend cable reach up to 15 meters and reduce system size, weight and power. Learn about the basics of V³Link technology and explore typical applications for V³Link in this training video.

Click here for more information

featured paper

Improving Design Robustness and Efficiency for Today’s Advanced Nodes

Sponsored by Synopsys

Learn how designers can take advantage of new ways to efficiently pinpoint voltage bottlenecks, drive voltage margin uniformity, and uncover opportunities to fine-tune operating voltages using PrimeShield design robustness solution.

Click to read the latest issue of Designer's Digest

featured chalk talk

Power Profiler II

Sponsored by Mouser Electronics and Nordic Semiconductor

If you are working on a low-power IoT design, you are going to face power issues that can get quite complicated. Addressing these issues earlier in your design process can save you a lot of time, effort, and frustration. In this episode of Chalk Talk, Amelia Dalton chats with Kristian Sæther from Nordic Semiconductor about the details of the new Nordic Power Profiler Kit II - including how it can measure actual current, help you configure the right design settings, and show you a visualized power profile for your next design.

Click here for more information about the Nordic Semiconductor Power Profiler Kit II (PPK2)