editor's blog
Subscribe Now

Extreme Compilers for Extreme Architectures

ACE calls them “extreme architectures.” These are the processors that your mother told you to avoid because they’re just too darn hard to support. You can come up with the niftiest hardware features, but who’s going to figure out how to turn C code into something that will take advantage of them?

Well, ACE would say, “Don’t listen to your mother.” Their CoSy tool (I keep wanting to pronounce this “Co-Sigh,” you know, kind of like when you both lay back and realize that you both have something you need to talk about… but actually, ACE pronounces it “cozy”…) can take bizarre architectures and help you generate a compiler than optimizes the code it generates from a C program.

Where do you find these processors? In those dark alleys your mother told you to avoid? Perhaps… There might be one in that headset that that shady character is wearing. Don’t ask to take it apart and check; take our word for it.

But deeply-embedded processors that look nothing like the kind your mother likes, resembling them only in that they run code; they are found in the dark recesses of systems where every cycle counts for very specific functions. Like audio. Or video or communications or… well, your imagination is the limit.

Down there, you can sneer at power-of-two bit widths. You want precisely 11 bits? 17 bits? 19 bits? (These are prime examples…) You can do it, and CoSy will help you produce a compiler that allows a C program to use that data. You can also set custom alignment.

And the supported architectures don’t have to be on some “Here are the supported bizarre architectures”  list. If you build your own via ARC (now Synopsys) or Tensilica (now Cadence), for example, you can still use CoSy to generate the compiler.

You can find out more about their latest edition in their announcement.

Leave a Reply

featured blogs
Nov 30, 2023
No one wants to waste unnecessary time in the model creation phase when using a modeling software. Rather than expect users to spend time trawling for published data and tediously model equipment items one by one from scratch, modeling software tends to include pre-configured...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

Portable Medical Devices and Connected Health
Decentralized healthcare is moving from hospitals and doctors’ offices to the patients’ home and office and in the form of personal, wearable, and connected devices. In this episode of Chalk Talk, Amelia Dalton and Roger Bohannan from Littelfuse examine the components, functions and standards for a variety of portable connected medical devices. They investigate how Littelfuse can help you navigate the development of your next portable connected medical design.
Jun 26, 2023
19,061 views