editor's blog
Subscribe Now

Sensor Fusion: DIY or Turnkey?

Sensor fusion was the name of the game this year at Sensors Expo (especially the MIG pre-conference event). But at least two of the visible players in this space are going about it two different ways.

We’ve seen Movea moving in a direction of giving control to system designers through tools. The idea here is that a system integrator will pull sensors together and assemble custom fusion algorithms from building blocks. Key to the success of this model is the assumption that system integrators want to do this work themselves.

By contrast, Sensor Platforms has a business model that reflects a different view: system houses don’t really want to be bothered with sensor fusion and would rather a company steeped in the technology do it for them. So rather than delivering DIY tools, Sensor Platforms delivers turnkey custom fusion that is then used as is. Which is partly why you might not see as much of their marketing; it’s less of a product push per se.

Which raises a very interesting question: Is one of these guys completely wrong? Or, perhaps, is this a market thing? And if it’s a market thing, how does it play? On the one hand, you might see big OEMs doing the turnkey approach. After all, a company that can deliver turnkey algorithms is going to be enticed by the promise of big companies, and, if it’s a small company, it may not have the resources to go after the little guys. (Or it may simply spurn the little guys as unworthy of their time… Not saying this specifically about Sensor Platforms, but I’ve seen it in other companies from the inside.) That would leave the DIY approach for the smaller folks.

On the other hand, small companies are less likely to have resources to be monkeying with sensor fusion algorithms, and they might feel their time would be better spent if someone else did that (assuming that those algorithms didn’t constitute core defensible value). Big companies, on the other hand, have oodles of top-level algorithm guys with not enough to do. [Ducks as the shoes come flying.] Realistically, if any company could do it themselves, it would be the big ones.

So this is a question for you: which is it?

–          DIY is the only worthy approach?

–          Turnkey is the only worthy approach?

–          They both have a place? If this, then how does it split

Leave a Reply

featured blogs
Oct 22, 2020
WARNING: If you read this blog and visit the featured site, Max'€™s Cool Beans will accept no responsibility for the countless hours you may fritter away....
Oct 22, 2020
Cadence ® Spectre ® AMS Designer is a high-performance mixed-signal simulation system. The ability to use multiple engines and drive from a variety of platforms enables you to "rev... [[ Click on the title to access the full blog on the Cadence Community site....
Oct 20, 2020
In 2020, mobile traffic has skyrocketed everywhere as our planet battles a pandemic. Samtec.com saw nearly double the mobile traffic in the first two quarters than it normally sees. While these levels have dropped off from their peaks in the spring, they have not returned to ...
Oct 16, 2020
[From the last episode: We put together many of the ideas we'€™ve been describing to show the basics of how in-memory compute works.] I'€™m going to take a sec for some commentary before we continue with the last few steps of in-memory compute. The whole point of this web...

featured video

Demo: Inuitive NU4000 SoC with ARC EV Processor Running SLAM and CNN

Sponsored by Synopsys

See Inuitive’s NU4000 3D imaging and vision processor in action. The SoC supports high-quality 3D depth processor engine, SLAM accelerators, computer vision, and deep learning by integrating Synopsys ARC EV processor. In this demo, the NU4000 demonstrates simultaneous 3D sensing, SLAM and CNN functionality by mapping out its environment and localizing the sensor while identifying the objects within it. For more information, visit inuitive-tech.com.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

Designing highly efficient, powerful and fast EV charging stations

Sponsored by Texas Instruments

Scaling the necessary power for fast EV charging stations can be challenging. One solution is to use modular power converters stacked in parallel. Learn more in our technical article.

Click here to download the technical article

Featured Chalk Talk

Microchip SAM11L KPH

Sponsored by Mouser Electronics and Microchip

Adding connectivity to your embedded design opens up a whole new realm of security challenges. Inviting your device to the IoT requires careful attention to building a secure foundation. In this episode of Chalk Talk, Amelia Dalton chats with Anand Rangarajan from Microchip about the SAML11-KPH MCU and how it can help you develop your application without worrying about security.

Click here for more information about Microchip Technology SAM L10/L11 ARM® Cortex®-M23 MCUs