editor's blog
Subscribe Now

SystemC HLS Optimizes Power

Forte occupies what you might call a middle level in logic synthesis. We’ve talked about the positioning before, but a concise way of looking at it might be as follows:

  • ANSI C/C++ provides an unstructured, untimed description of the design.
  • SystemC provides a structured, untimed description of the design.
  • RTL provides a structured, timed description of the design.

The middle one isn’t quite that simple: the interfaces are timed, either at the transaction or pin level. But the timing of what goes on inside is a product of synthesis and is subject to tradeoffs.

In an update conversation at DAC, Forte noted that one of the big improvements to their latest high-level synthesis (HLS) release, Cynthesizer 5, is the ability to include power in the tradeoffs in addition to performance and area. This actually required a complete redo of the underlying infrastructure, so much of the code is brand new.

One of the outcomes of that rework was to change how scheduling and allocation are done. For a given microarchitecture, scheduling refers to the process of assigning an event to a particular clock edge. For example, if two streams of logic converge and one needs eight clock cycles to complete and the other only three, then you could have the short-chain logic start early and then wait (“eager”) or start just-in-time to arrive with the long logic chain (“lazy”). Allocation assigns resources.

Their tools used to do scheduling first and then allocation. Now they happen at the same time, which means they can be co-optimized.

They can also do more design space exploration, with Monte Carlo capabilities. An example of this would be in the selection of a multiplier. In the past, they had one multiplier architecture; now they have several, with different performance/power/area tradeoffs. After manually dialing in the number of choices to get close, you can use Monte Carlo analysis to figure out which is best. (The manual part is just to keep the design space from being too enormous.) A half hour or so typically allows the tool to sort through thousands of different configurations to find the optimal one(s).

Optimizing for power brings one new consideration into play: state machine encoding. You generally want to minimize the number of bits switching (and even gate clocks to hit only the register that’s going to change). But one-hot, which is the extreme example, requires too many flip-flops. So they have a statistical algorithm that determines, short of one-hot, what the lowest-power encoding scheme would be.

Finally, they’ve put an algorithm viewer into the tool to allow the guys doing the implementation, who likely received it from the guy who wrote the algorithm, to get a better feel for what’s going on in the algorithm itself.

You can find more about their latest update in their announcement.

Leave a Reply

featured blogs
Sep 19, 2023
What's new with the latest Bluetooth mesh specification? Explore mesh 1.1 features that improve security and network efficiency, reduce power, and more....
Sep 20, 2023
Qualcomm FastConnect Software Suite for XR empowers OEMs with system-level optimizations for truly wireless XR....
Sep 20, 2023
The newest version of Fine Marine offers critical enhancements that improve solver performances and sharpen the C-Wizard's capabilities even further. Check out the highlights: γ-ReθTransition Model and Extension for Crossflow Modeling We have boosted our modeling capabi...
Sep 20, 2023
ESD protection analysis is a critical step in the IC design process; see how our full-chip PrimeESD tool accelerates ESD simulation and violation reporting.The post New Unified Electrostatic Reliability Analysis Solution Has Your Chip Covered appeared first on Chip Design...
Sep 10, 2023
A young girl's autobiography describing growing up alongside the creation of the state of Israel...

featured video

TDK PowerHap Piezo Actuators for Ideal Haptic Feedback

Sponsored by TDK

The PowerHap product line features high acceleration and large forces in a very compact design, coupled with a short response time. TDK’s piezo actuators also offers good sensing functionality by using the inverse piezo effect. Typical applications for the include automotive displays, smartphones and tablet.

Click here for more information about PowerHap Piezo Actuators

featured webinar

Secure the Future with Post-Quantum Cryptography on eFPGAs

Sponsored by QuickLogic

With the emergence of the quantum threat, the need for robust cybersecurity measures has never been more critical. Join us for an enlightening webinar that delves into the future of data protection with Xiphera's groundbreaking Post-Quantum Cryptography and QuickLogic's cutting-edge eFPGA technology. Join the webinar today and learn about the quantum threat and how it affects cybersecurity, Post-Quantum Cryptography (PQC) and how it works, how eFPGA can be used to gain maximum protection with PQC and the importance of PQC for digital design engineers, system security architects, and developers

Don't miss this timely webinar. Sign up today.

featured chalk talk

Industry 4.0: From Conception to Value Generation
Industry 4.0 has brought a lot of exciting innovation to the manufacturing and industrial factories throughout the world, but getting your next IIoT design from concept to reality can be a challenging process. In this episode of Chalk Talk, Adithya Madanahalli from Würth Elektronik and Amelia Dalton explore how Würth Elektronik can help you jump start your next IIoT design.
Apr 17, 2023
19,516 views