editor's blog
Subscribe Now

New Process Modeling Mechanism

Simulation is all about using the simplest possible modeling technique that gives enough accuracy to make the results useful. Simplicity typically speeds up simulation – and, in many cases, makes the problem tractable in the first place.

But at some point, the unnecessary details that the modeling abstractions hide become necessary. At that stage, if you’re lucky, you can tweak your modeling technique to allow for the now-important effects. But eventually you may to have to take a new approach.

This is what’s happened for certain very specific processes that Coventor’s SEMulator3D tool models. Their voxel approach still works for most processes, but can’t capture all the nuances of multi-etch and selective epitaxy processes. For example, in multi-etch, where multiple materials are being etched in one step, the vertical etch rates work just fine with voxels, but they can’t capture lateral bias. For selective epitaxy, crystal orientation can affect growth rates; again, this isn’t modeled well by voxels.

So they’ve added a “surface evolution” option – a completely different mathematical approach to modeling those processes. It handles multi-etch, improves the epitaxy modeling that they introduced last year, and also introduces redeposition (where etching results in deposition of the etched material elsewhere, particularly used for sidewalls) and sputtering.

They have also introduced virtual metrology capabilities that mirror the in-line process metrology that would normally be built into a physical fabrication line. This allows monitoring of critical parameters as the process is simulated just as would be done if the experiments being simulated were actually being done on physical wafers in a real fab.

You can find out more about the latest SEMulator3D version, which they say is the biggest release they’ve ever done, in their announcement.

Leave a Reply

featured blogs
Jul 20, 2024
If you are looking for great technology-related reads, here are some offerings that I cannot recommend highly enough....

featured video

Larsen & Toubro Builds Data Centers with Effective Cooling Using Cadence Reality DC Design

Sponsored by Cadence Design Systems

Larsen & Toubro built the world’s largest FIFA stadium in Qatar, the world’s tallest statue, and one of the world’s most sophisticated cricket stadiums. Their latest business venture? Designing data centers. Since IT equipment in data centers generates a lot of heat, it’s important to have an efficient and effective cooling system. Learn why, Larsen & Toubro use Cadence Reality DC Design Software for simulation and analysis of the cooling system.

Click here for more information about Cadence Multiphysics System Analysis

featured paper

Navigating design challenges: block/chip design-stage verification

Sponsored by Siemens Digital Industries Software

Explore the future of IC design with the Calibre Shift left initiative. In this paper, author David Abercrombie reveals how Siemens is changing the game for block/chip design-stage verification by moving Calibre verification and reliability analysis solutions further left in the design flow, including directly inside your P&R tool cockpit. Discover how you can reduce traditional long-loop verification iterations, saving time, improving accuracy, and dramatically boosting productivity.

Click here to read more

featured chalk talk

Enabling IoT with DECT NR+, the Non-Cellular 5G Standard
In the ever-expanding IoT market, there is a growing need for private, low cost networks. In this episode of Chalk Talk, Amelia Dalton and Heidi Sollie from Nordic Semiconductor explore the details of DECT NR+, the world’s first non-cellular 5G technology standard. They investigate how this self-healing, decentralized, autonomous mesh network can help solve a variety of IoT connectivity issues and how Nordic is helping designers take advantage of DECT NR+ with their nRF91 System-in-Package family.
Aug 17, 2023
39,164 views