editor's blog
Subscribe Now

New Process Modeling Mechanism

Simulation is all about using the simplest possible modeling technique that gives enough accuracy to make the results useful. Simplicity typically speeds up simulation – and, in many cases, makes the problem tractable in the first place.

But at some point, the unnecessary details that the modeling abstractions hide become necessary. At that stage, if you’re lucky, you can tweak your modeling technique to allow for the now-important effects. But eventually you may to have to take a new approach.

This is what’s happened for certain very specific processes that Coventor’s SEMulator3D tool models. Their voxel approach still works for most processes, but can’t capture all the nuances of multi-etch and selective epitaxy processes. For example, in multi-etch, where multiple materials are being etched in one step, the vertical etch rates work just fine with voxels, but they can’t capture lateral bias. For selective epitaxy, crystal orientation can affect growth rates; again, this isn’t modeled well by voxels.

So they’ve added a “surface evolution” option – a completely different mathematical approach to modeling those processes. It handles multi-etch, improves the epitaxy modeling that they introduced last year, and also introduces redeposition (where etching results in deposition of the etched material elsewhere, particularly used for sidewalls) and sputtering.

They have also introduced virtual metrology capabilities that mirror the in-line process metrology that would normally be built into a physical fabrication line. This allows monitoring of critical parameters as the process is simulated just as would be done if the experiments being simulated were actually being done on physical wafers in a real fab.

You can find out more about the latest SEMulator3D version, which they say is the biggest release they’ve ever done, in their announcement.

Leave a Reply

featured blogs
Jul 10, 2020
[From the last episode: We looked at the convolution that defines the CNNs that are so popular for machine vision applications.] This week we'€™re going to do some more math, although, in this case, it won'€™t be as obscure and bizarre as convolution '€“ and yet we will...
Jul 10, 2020
I need a problem that lends itself to being solved using a genetic algorithm; also, one whose evolving results can be displayed on my 12 x 12 ping pong ball array....
Jul 9, 2020
It happens all the time. We'€™re online with a designer and we'€™re looking at a connector in our picture search. He says '€œI need a connector that looks just like this one, but '€¦'€ and then he goes on to explain something he needs that'€™s unique to his desig...

Featured Video

Product Update: DesignWare® Foundation IP

Sponsored by Synopsys

Join Prasad Saggurti for an update on Synopsys’ DesignWare Foundation IP, including the world’s fastest TCAMs, widest-voltage GPIOs, I2C & I3C IOs, and LVDS IOs. Synopsys Foundation IP is silicon-proven in 7nm in more than 500,000 customer wafers, and 5nm is in development.

Click here for more information about DesignWare Foundation IP: Embedded Memories, Logic Libraries & GPIO

Featured Chalk Talk

PiezoListen: A New Kind of Speaker for New Applications

Sponsored by Mouser Electronics and TDK

Until recently, putting speakers into extremely space-constrained designs was a daunting challenge. Now, however, advances in piezo speakers bring remarkable performance to ultra-small ultra-thin speakers. In this episode of Chalk Talk, Amelia Dalton chats with Matt Reynolds of TDK about PiezoListen - a whole new kind of high-performance multilayer piezo speaker.

Click here for more information about TDK PiezoListen™ Ultra-Thin Piezo Speakers