editor's blog
Subscribe Now

Big and Little Core Combos

A long while back ARM introduced their big.LITTLE concept. (So cute how they put the big in little letters and the little in big letters! Did you notice that?) The general concept is to have one beefy processor for heavy lifting and one small one for light duty; by powering them up and down, you can save energy by assigning the right core to the right task.

But at last week’s Multicore DevCon, processor guru Linley Gwennap showed, among other things, various ways in which companies are implementing this concept. Although, of course, ARM figures in all of them.

  • Nvidia includes an A15 CompanionCore (their original whitepaper shows an A9). Yeah, an A15 is the “little.” The point is that, unlike the other A15s on the chip, this one is optimized on the low-power end of the process, so it has less performance but consumes less power.
  • Samsung is going more the way ARM suggested: pairing an A15 with an A7. The A7 is 3.3 times more power efficient in MIPS/W; twice as efficient in MIPS/m2. But the A15 is 3 times faster.
  • Samsung’s Octa is more complicated. It has 4 A15s and 4 A7s, all software compatible so that any software can run on any of them. Problem is, Android is running on it, and, for now, Android doesn’t like mixtures of core types: it want’s homogeneous (apparently a future rev won’t). So you can’t run both sets of four cores at the same time. If you want performance, then you run the four A15s and the A7s are powered off; if you want to run with lower power, then you shut the A15s down and power up the A7s and run them. That’s where the software compatibility is critical.
  • Qualcomm fakes it, you might say. They have an A15, and they just clock it way down to save power. This is almost as effective as using an A7.

Clearly lots of ways to skin that cat…

Leave a Reply

featured blogs
Oct 23, 2020
Processing a component onto a PCB used to be fairly straightforward. Through hole products, a single or double row surface mount with a larger center-line rarely offer unique challenges obtaining a proper solder joint. However, as electronics continue to get smaller and conne...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...
Oct 23, 2020
At 11:10am Korean time this morning, Cadence's Elias Fallon delivered one of the keynotes at ISOCC (International System On Chip Conference). It was titled EDA and Machine Learning: The Next Leap... [[ Click on the title to access the full blog on the Cadence Community ...

featured video

Better PPA with Innovus Mixed Placer Technology – Gigaplace XL

Sponsored by Cadence Design Systems

With the increase of on-chip storage elements, it has become extremely time consuming to come up with an optimized floorplan with manual methods. Innovus Implementation’s advanced multi-objective placement technology, GigaPlace XL, provides automation to optimize at scale, concurrent placement of macros, and standard cells for multiple objectives like timing, wirelength, congestion, and power. This technology provides an innovative way to address design productivity along with design quality improvements reducing weeks of manual floorplan time down to a few hours.

Click here for more information about Innovus Implementation System

featured Paper

New package technology improves EMI and thermal performance with smaller solution size

Sponsored by Texas Instruments

Power supply designers have a new tool in their effort to achieve balance between efficiency, size, and thermal performance with DC/DC power modules. The Enhanced HotRod™ QFN package technology from Texas Instruments enables engineers to address design challenges with an easy-to-use footprint that resembles a standard QFN. This new package type combines the advantages of flip-chip-on-lead with the improved thermal performance presented by a large thermal die attach pad (DAP).

Click here to download the whitepaper

featured chalk talk

Using the Graphical PMSM FOC Component in Harmony3

Sponsored by Microchip and Mouser Electronics

Developing embedded software, and particularly configuring your embedded system can be a major pain for development engineers. Getting all the drivers, middleware, and libraries you need set up and in the right place and working is a constant source of frustration. In this episode of Chak Talk, Amelia Dalton chats with Brett Novak of Microchip about Microchip’s MPLAB Harmony 3, with the MPLAB Harmony Configurator - an embedded development framework with a drag-and-drop GUI that makes configuration a snap.

Click here for more information about Microchip Technology MPLAB® X Integrated Development Environment (IDE)