editor's blog
Subscribe Now

Big and Little Core Combos

A long while back ARM introduced their big.LITTLE concept. (So cute how they put the big in little letters and the little in big letters! Did you notice that?) The general concept is to have one beefy processor for heavy lifting and one small one for light duty; by powering them up and down, you can save energy by assigning the right core to the right task.

But at last week’s Multicore DevCon, processor guru Linley Gwennap showed, among other things, various ways in which companies are implementing this concept. Although, of course, ARM figures in all of them.

  • Nvidia includes an A15 CompanionCore (their original whitepaper shows an A9). Yeah, an A15 is the “little.” The point is that, unlike the other A15s on the chip, this one is optimized on the low-power end of the process, so it has less performance but consumes less power.
  • Samsung is going more the way ARM suggested: pairing an A15 with an A7. The A7 is 3.3 times more power efficient in MIPS/W; twice as efficient in MIPS/m2. But the A15 is 3 times faster.
  • Samsung’s Octa is more complicated. It has 4 A15s and 4 A7s, all software compatible so that any software can run on any of them. Problem is, Android is running on it, and, for now, Android doesn’t like mixtures of core types: it want’s homogeneous (apparently a future rev won’t). So you can’t run both sets of four cores at the same time. If you want performance, then you run the four A15s and the A7s are powered off; if you want to run with lower power, then you shut the A15s down and power up the A7s and run them. That’s where the software compatibility is critical.
  • Qualcomm fakes it, you might say. They have an A15, and they just clock it way down to save power. This is almost as effective as using an A7.

Clearly lots of ways to skin that cat…

Leave a Reply

featured blogs
Dec 1, 2022
Raspberry Pi are known for providing lost-cost computing around the world. Their computers have been used by schools, small businesses, and even government call centers. One of their missions is to educate children about computers and to help them realize their potential thro...
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Unique AMS Emulation Technology

Sponsored by Synopsys

Learn about Synopsys' collaboration with DARPA and other partners to develop a one-of-a-kind, high-performance AMS silicon verification capability. Please watch the video interview or read it online.

Read the interview online:

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Energy Storage: The Key to Sector Coupling

Sponsored by Mouser Electronics and Phoenix Contact

Climate change is making better energy storage more important than ever before. In this episode of Chalk Talk, Dr. Rüdiger Meyer from Phoenix Contact joins me to discuss the what, where and how of energy storage systems. We take a closer look at the structure and components included in typical energy storage systems and the role that connectors play in successful energy storage systems.

Click here for more information about Phoenix Contact Energy Storage Solutions