editor's blog
Subscribe Now

Embedded in the Cloud

This is a special one that’s going out to my home boy Jim Turley, who has a special relationship with Cloud Computing. He has a way of poking holes in one of the current darling of technology that is kind of undeniably persuasive. He makes you want to shout, as he shouts, “Testify!” even for me, who has been somewhat more optimistic about the possibilities of the cloud – and I’ve even worked for a company with a cloud-computing model (who has since pulled out of the cloud). (And I always like the emperor-has-no-clothes shouters – when they’re right, or partly right, anyway…)

Most of our cloud discussions have had to do with design tools. You know, using the cloud for peak usage and such. Which, as Jim has pointed out, feels very much like a trip back to the 70s and 80s. We have also talked about content in the cloud. But here’s a new one, as tossed out in a Wind River keynote at this week’s Multicore DevCon in Santa Clara: distributing your embedded code over the cloud. No, not like sending it to people: literally distributed computing – part of your software on your system, part in the cloud running an RTOS.

Yeah, you saw that right: real time.

Here’s the crux of what makes this remotely feasible: latency has dropped dramatically. Actually, there are two kinds of latency. The first I’ll call spin-up latency, and that’s the time it takes to get a system going. Back when I was involved in this, it took a good five minutes or so to get a machine ready to run. That meant that, from a farm standpoint, in order to give users reasonable response, you always had to have an idle machine warmed up ready to allocate. Once it got allocated, then you needed to spin another one up. Waiting five minutes would be totally unacceptable to a user.

This spin-up time is apparently much lower these days; no machines need to idle in the background like trucks at a truck stop while the driver grabs a sloppy joe.

Then there’s simple communication latency during operation. And this has also gotten much better, apparently. This, aided by technologies like KVM (kernel-based virtual machine), is making it feasible, or potentially feasible in the not-too-distant future, to run real-time functions in the cloud. Seriously.

This seems, well, surprising, but, then again, there are lots of things I wouldn’t have believed possible that I now take for granted, so perhaps I’m just an old codger. The other thing, of course, is that you have to convince your customer that your system won’t have any issues with ¾ of its code running in the cloud. Would love to see the safety-critical folks approve that one!

I will be watching with riveted attention to see how this plays out.

Hey Jim, waddaya think? Have we finally found a use for the cloud that you like?

(Heck, not just Jim – what do the rest of you think?)

Leave a Reply

featured blogs
Sep 21, 2020
Technology is changing the strategies we use to do things - oh so fast that 2010 seems like a distant past- within many spaces -- including the way we do our current topic of interest - Timing... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 21, 2020
Semicon, the world’s largest semiconductor conference and exhibition, is September 23-25 in Taiwan. Like most shows of its size and caliber, Semicon boasts a long and illustrious list of exhibitors (500+), and countless forums, symposiums, and workshops. Of course Semic...
Sep 18, 2020
[From the last episode: We put the various pieces of a memory together to show the whole thing.] Before we finally turn our memory discussion into an AI discussion, let'€™s take on one annoying little detail that I'€™ve referred to a few times, but have kept putting off. ...
Sep 16, 2020
In addition to the Great Highland (Scottish) bagpipes, the Uilleann (Irish) bagpipes, and the Northumbrian (English) bagpipes, there are myriad other offerings spanning the globe....

Featured Video

AI SoC Chats: Host Processor Interconnect IP for AI Accelerators

Sponsored by Synopsys

To support host-to-AI accelerator connectivity, AI chipsets can use PCI Express, CCIX, and/or CXL, and each have their benefits. Learn how to find the right interconnect for your AI SoC design.

Click here for more information about DesignWare IP for Amazing AI

Featured Paper

Helping physicians achieve faster, more accurate patient diagnoses with molecular test technology

Sponsored by Texas Instruments

Point-of-care molecular diagnostics (PoC) help physicians achieve faster, more accurate patient diagnoses and treatment decisions. This article breaks down how molecular test technology works and the building blocks for a PoC molecular diagnostics analyzer sensor front end system.

Read the Article

Featured Chalk Talk

Single Pair Ethernet

Sponsored by Mouser Electronics and Harting

Industry 4.0 brings serious demands on communication connections. Designers need to consider interoperability, processing, analytics, EMI reduction, field rates, communication protocols and much more. In this episode of Chalk Talk, Amelia Dalton chats with Piotr Polak and McKenzie Reed of Harting about using single-pair Ethernet for Industry 4.0.

Click here for more information about HARTING T1 Industrial Single Pair Ethernet (SPE) Products