editor's blog
Subscribe Now

Embedded in the Cloud

This is a special one that’s going out to my home boy Jim Turley, who has a special relationship with Cloud Computing. He has a way of poking holes in one of the current darling of technology that is kind of undeniably persuasive. He makes you want to shout, as he shouts, “Testify!” even for me, who has been somewhat more optimistic about the possibilities of the cloud – and I’ve even worked for a company with a cloud-computing model (who has since pulled out of the cloud). (And I always like the emperor-has-no-clothes shouters – when they’re right, or partly right, anyway…)

Most of our cloud discussions have had to do with design tools. You know, using the cloud for peak usage and such. Which, as Jim has pointed out, feels very much like a trip back to the 70s and 80s. We have also talked about content in the cloud. But here’s a new one, as tossed out in a Wind River keynote at this week’s Multicore DevCon in Santa Clara: distributing your embedded code over the cloud. No, not like sending it to people: literally distributed computing – part of your software on your system, part in the cloud running an RTOS.

Yeah, you saw that right: real time.

Here’s the crux of what makes this remotely feasible: latency has dropped dramatically. Actually, there are two kinds of latency. The first I’ll call spin-up latency, and that’s the time it takes to get a system going. Back when I was involved in this, it took a good five minutes or so to get a machine ready to run. That meant that, from a farm standpoint, in order to give users reasonable response, you always had to have an idle machine warmed up ready to allocate. Once it got allocated, then you needed to spin another one up. Waiting five minutes would be totally unacceptable to a user.

This spin-up time is apparently much lower these days; no machines need to idle in the background like trucks at a truck stop while the driver grabs a sloppy joe.

Then there’s simple communication latency during operation. And this has also gotten much better, apparently. This, aided by technologies like KVM (kernel-based virtual machine), is making it feasible, or potentially feasible in the not-too-distant future, to run real-time functions in the cloud. Seriously.

This seems, well, surprising, but, then again, there are lots of things I wouldn’t have believed possible that I now take for granted, so perhaps I’m just an old codger. The other thing, of course, is that you have to convince your customer that your system won’t have any issues with ¾ of its code running in the cloud. Would love to see the safety-critical folks approve that one!

I will be watching with riveted attention to see how this plays out.

Hey Jim, waddaya think? Have we finally found a use for the cloud that you like?

(Heck, not just Jim – what do the rest of you think?)

Leave a Reply

featured blogs
Dec 1, 2022
Raspberry Pi are known for providing lost-cost computing around the world. Their computers have been used by schools, small businesses, and even government call centers. One of their missions is to educate children about computers and to help them realize their potential thro...
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Unique AMS Emulation Technology

Sponsored by Synopsys

Learn about Synopsys' collaboration with DARPA and other partners to develop a one-of-a-kind, high-performance AMS silicon verification capability. Please watch the video interview or read it online.

Read the interview online:

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

HARTING's HAN® 1A Connector Series

Sponsored by Mouser Electronics and HARTING

There is a big push in the electronics industry today to make our designs smaller and more modular. One way we can help solve these design challenges is with the choice of connector we select for our designs. In this episode of Chalk Talk, Goda Inokaityte from HARTING and Amelia Dalton examine the role that miniaturized connectivity plays in the future of electronic design. They also how HARTING's Han 1A connectors can help reduce errors in installation, improve serviceability and increase modularity in your next design.

Click here for more information about HARTING Han® 1A Heavy Duty Power Connectors