editor's blog
Subscribe Now

Embedded in the Cloud

This is a special one that’s going out to my home boy Jim Turley, who has a special relationship with Cloud Computing. He has a way of poking holes in one of the current darling of technology that is kind of undeniably persuasive. He makes you want to shout, as he shouts, “Testify!” even for me, who has been somewhat more optimistic about the possibilities of the cloud – and I’ve even worked for a company with a cloud-computing model (who has since pulled out of the cloud). (And I always like the emperor-has-no-clothes shouters – when they’re right, or partly right, anyway…)

Most of our cloud discussions have had to do with design tools. You know, using the cloud for peak usage and such. Which, as Jim has pointed out, feels very much like a trip back to the 70s and 80s. We have also talked about content in the cloud. But here’s a new one, as tossed out in a Wind River keynote at this week’s Multicore DevCon in Santa Clara: distributing your embedded code over the cloud. No, not like sending it to people: literally distributed computing – part of your software on your system, part in the cloud running an RTOS.

Yeah, you saw that right: real time.

Here’s the crux of what makes this remotely feasible: latency has dropped dramatically. Actually, there are two kinds of latency. The first I’ll call spin-up latency, and that’s the time it takes to get a system going. Back when I was involved in this, it took a good five minutes or so to get a machine ready to run. That meant that, from a farm standpoint, in order to give users reasonable response, you always had to have an idle machine warmed up ready to allocate. Once it got allocated, then you needed to spin another one up. Waiting five minutes would be totally unacceptable to a user.

This spin-up time is apparently much lower these days; no machines need to idle in the background like trucks at a truck stop while the driver grabs a sloppy joe.

Then there’s simple communication latency during operation. And this has also gotten much better, apparently. This, aided by technologies like KVM (kernel-based virtual machine), is making it feasible, or potentially feasible in the not-too-distant future, to run real-time functions in the cloud. Seriously.

This seems, well, surprising, but, then again, there are lots of things I wouldn’t have believed possible that I now take for granted, so perhaps I’m just an old codger. The other thing, of course, is that you have to convince your customer that your system won’t have any issues with ¾ of its code running in the cloud. Would love to see the safety-critical folks approve that one!

I will be watching with riveted attention to see how this plays out.

Hey Jim, waddaya think? Have we finally found a use for the cloud that you like?

(Heck, not just Jim – what do the rest of you think?)

Leave a Reply

featured blogs
Mar 5, 2021
The combination of the figure and the moving sky in this diorama -- accompanied by the music -- is really rather tasty. Our cats and I could watch this for hours....
Mar 5, 2021
In February, we continued to build out the content on the website, released a new hierarchy for RF products, and added ways to find Samtec “Reserve” products. Here are the major web updates to Samtec.com for February 2021. Edge Card Content Page Samtec offers a fu...
Mar 5, 2021
Massive machine type communications (mMTC) along with enhanced Mobile Broadband (eMBB) and Ultra Reliable Low Latency Communications (URLLC) represent the three pillars of the 5G initiative defined... [[ Click on the title to access the full blog on the Cadence Community sit...
Mar 5, 2021
Explore what's next in automotive sensors, such as the roles of edge computing & sensor fusion and impact of sensor degradation & software lifecycle management. The post How Sensor Fusion Technology Is Driving Autonomous Cars appeared first on From Silicon To Softw...

featured paper

The Basics of Using the DS28S60

Sponsored by Maxim Integrated

This app note details how to use the DS28S60 cryptographic processor with the ChipDNA™. It describes the required set up of the DS28S60 and a step-by-step approach to use the asymmetric key exchange to securely generate a shared symmetric key between a host and a client. Next, it provides a walk through on how to use the symmetric key to exchange encrypted data between a Host and a Client. Finally, it gives an example of a bidirectional authentication process with the DS28S60 using an ECDSA.

Click here to download the whitepaper

Featured Chalk Talk

Cadence Celsius Thermal Solver

Sponsored by Cadence Design Systems

Electrical-thermal co-simulation can dramatically improve the system design process, allowing thermal design adaptation to be done much earlier. The Cadence Celsius Thermal Solver is a complete electrical-thermal co-simulation solution for the full hierarchy of electronic systems from ICs to physical enclosures. In this episode of Chalk Talk, Amelia Dalton chats with CT Kao of Cadence Design Systems about how the Celsius Thermal Solver can help detect and mitigate thermal issues early in the design process.

More information about Celsius Thermal Solver