editor's blog
Subscribe Now

Concurrent Sign-off Analysis

I’m getting a sense that we’re back into the small-company-friendly phase of the EDA company cycle. A number of newcomers (which means they’ve been around working quietly for several years and are now launching) are knocking on doors.

Invarian is one such company, and they’ve launched two analysis platforms: their “InVar Pioneer Power Platform”, with power, IR-drop/EM, and thermal analysis, and their “InVar 3D Frontier Platform” for thermal analysis of 3D ICs.

Their claim to fame is that they’re the only tool that can handle true full-chip sign-off analysis at 28 nm and below, with SPICE accuracy and fast run times (“fast” being a relative term). In particular, for digital designs, they do concurrent analysis of timing, thermal, EM/IR, and power. Yeah, they have a timing engine – and they say it’s really good, too. But trying to displace PrimeTime as the gold standard is a tough call; that’s not their goal. So the timing engine serves the other pieces.

The whole concurrent thing means that, instead of running one analysis to completion and then handing those results to the next engine for different analysis, they run the engines together. As they iterate towards convergence, they update a common database on each cycle, so each engine is using a slightly-more-converged value from the other engines on every new cycle. They say that this speeds overall convergence, taking analysis that used to require several days to run and managing it in a few hours instead, with no loss of accuracy.

Of course, having a new tool also means that you can build in parallelism from the get-go, leveraging multicore and multi-machine computing resources.

For analog sign-off, they can do co-simulation with the usual SPICE suspects. And for 3D analysis for packages with multiple dice, they boast models that are more accurate and realistic than the standard JEDEC models. And they claim greater ease of use, making rules (which are constantly evolving) more manageable in particular.

You can find more in their release.

Leave a Reply

featured blogs
Dec 7, 2023
Semiconductor chips must be designed faster, smaller, and smarter'”with less manual work, more automation, and faster production. The Training Webinar 'Flow Wrapping: The Cadence Cerebrus Intelligent Chip Explorer Must Have' was recently hosted with me, Krishna Atreya, Princ...
Dec 6, 2023
Explore standards development and functional safety requirements with Jyotika Athavale, IEEE senior member and Senior Director of Silicon Lifecycle Management.The post Q&A With Jyotika Athavale, IEEE Champion, on Advancing Standards Development Worldwide appeared first ...
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

Achieving Reliable Wireless IoT
Sponsored by Mouser Electronics and CEL
Wireless connectivity is one of the most important aspects of any IoT design. In this episode of Chalk Talk, Amelia Dalton and Brandon Oakes from CEL discuss the best practices for achieving reliable wireless connectivity for IoT. They examine the challenges of IoT wireless connectivity, the factors engineers should keep in mind when choosing a wireless solution, and how you can utilize CEL wireless connectivity technologies in your next design.
Nov 28, 2023
1,095 views