editor's blog
Subscribe Now

Concurrent Sign-off Analysis

I’m getting a sense that we’re back into the small-company-friendly phase of the EDA company cycle. A number of newcomers (which means they’ve been around working quietly for several years and are now launching) are knocking on doors.

Invarian is one such company, and they’ve launched two analysis platforms: their “InVar Pioneer Power Platform”, with power, IR-drop/EM, and thermal analysis, and their “InVar 3D Frontier Platform” for thermal analysis of 3D ICs.

Their claim to fame is that they’re the only tool that can handle true full-chip sign-off analysis at 28 nm and below, with SPICE accuracy and fast run times (“fast” being a relative term). In particular, for digital designs, they do concurrent analysis of timing, thermal, EM/IR, and power. Yeah, they have a timing engine – and they say it’s really good, too. But trying to displace PrimeTime as the gold standard is a tough call; that’s not their goal. So the timing engine serves the other pieces.

The whole concurrent thing means that, instead of running one analysis to completion and then handing those results to the next engine for different analysis, they run the engines together. As they iterate towards convergence, they update a common database on each cycle, so each engine is using a slightly-more-converged value from the other engines on every new cycle. They say that this speeds overall convergence, taking analysis that used to require several days to run and managing it in a few hours instead, with no loss of accuracy.

Of course, having a new tool also means that you can build in parallelism from the get-go, leveraging multicore and multi-machine computing resources.

For analog sign-off, they can do co-simulation with the usual SPICE suspects. And for 3D analysis for packages with multiple dice, they boast models that are more accurate and realistic than the standard JEDEC models. And they claim greater ease of use, making rules (which are constantly evolving) more manageable in particular.

You can find more in their release.

Leave a Reply

featured blogs
Apr 18, 2021
https://youtu.be/afv9_fRCrq8 Made at Target Oakridge (camera Ziyue Zhang) Monday: "Targeting" the Open Compute Project Tuesday: NUMECA, Computational Fluid Dynamics...and the America's... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 16, 2021
Spring is in the air and summer is just around the corner. It is time to get out the Old Farmers Almanac and check on the planting schedule as you plan out your garden.  If you are unfamiliar with a Farmers Almanac, it is a publication containing weather forecasts, plantin...
Apr 15, 2021
Explore the history of FPGA prototyping in the SoC design/verification process and learn about HAPS-100, a new prototyping system for complex AI & HPC SoCs. The post Scaling FPGA-Based Prototyping to Meet Verification Demands of Complex SoCs appeared first on From Silic...
Apr 14, 2021
By Simon Favre If you're not using critical area analysis and design for manufacturing to… The post DFM: Still a really good thing to do! appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

featured chalk talk

AC Protection & Motor Control in HVAC Systems

Sponsored by Mouser Electronics and Littelfuse

The design of HVAC systems poses unique challenges for things like motor control and circuit protection. System performance and reliability are critical, and those come in part from choosing the right components for the job. In this episode of Chalk Talk, Amelia Dalton chats with Ryan Sheahen of Littelfuse about choosing the right components for your next HVAC design.

Click here for more information about Littelfuse AC Protection & Motor Control in HVAC Solutions