editor's blog
Subscribe Now

Getting Beyond “It Depends” for Certification

More and more electronics are going into places where they could cause real damage if they don’t work right. Things like airplanes and weapons and, in particular, the systems that control them. That goes for hardware and software.

So there are elaborate standards controlling how things have to be done in order to pass muster for such systems. DO-178, DO-278, and DO-254 are only the most visible of these. The problem is that the standards don’t actually tell you what has to be done. They outline a broad process for certification, but exactly what is supposed to happen relies on a key individual: the “designated engineering representative,” or DER.

If you ask, in general, how you get a system certified, the answer is, “It depends.” And one of the things it depends on is the DER. You work with the DER to decide what you need to do for your system to be certified. And just because you did a particular set of things with one DER for one system doesn’t mean you can simply replicate that process with a different DER on another system. If the other DER has different ideas about how things should be done, then you have to go in that direction for the new project.

I (thankfully) don’t live in that particular world, but that’s got to be completely frustrating.

LDRA has offered up a Compliance Management System to help with this. It’s a certification process based on a particular individual, Todd White’s, 30 years of experience as a DER. It incorporates a system of checklists, matrices, and document templates intended to speed the certification process.

It works hand in hand with their certification consulting services, which are probably helpful to ensuring that this works most seamlessly. Using a different DER would, presumably, run the risk of that DER wanting something different. You would think, if these are truly proven elements for certification, that any reasonable DER would be happy to include them into a certification plan – unless they have their own system and insist on doing it their way.

So there’s still the possibility of some “it depends” in the mix, but the goal appears to be to remove some of it.

You can find out more in their recent release.

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

Clinical-Grade AFE Measures Four Vital Signs for Remote Patient Monitoring Devices

Sponsored by Analog Devices

Simplify the design of wearable remote patient monitoring devices by measuring four vital signs with one triple-system vital signs AFE. This single-chip AFE integrates three measurement systems (optical, ECG and bio-impedance) to obtain four common vital signs: electrocardiogram, heart rate, blood-oxygen saturation, and respiration rate.

Find Out More

featured chalk talk

Hot-Swap and Power Protection -- Mouser Electronics and Analog Devices

Sponsored by Mouser Electronics and Analog Devices

When it comes to our always-on, critical systems we need to carefully consider power protection and maintainability. In this episode of Chalk Talk, Amelia Dalton and Dwight Larson investigate the issues that surround hot-plugging into an energized power supply, the best solutions to consider, what the different hot-swap circuit topologies look like for a variety of applications and why the MAX15090B/C with its innovative current foldback startup may be the best solution for your next design.

Click here for more information about Maxim Integrated MAX15090B/MAX15090C Hot Swap ICs