editor's blog
Subscribe Now

Getting Beyond “It Depends” for Certification

More and more electronics are going into places where they could cause real damage if they don’t work right. Things like airplanes and weapons and, in particular, the systems that control them. That goes for hardware and software.

So there are elaborate standards controlling how things have to be done in order to pass muster for such systems. DO-178, DO-278, and DO-254 are only the most visible of these. The problem is that the standards don’t actually tell you what has to be done. They outline a broad process for certification, but exactly what is supposed to happen relies on a key individual: the “designated engineering representative,” or DER.

If you ask, in general, how you get a system certified, the answer is, “It depends.” And one of the things it depends on is the DER. You work with the DER to decide what you need to do for your system to be certified. And just because you did a particular set of things with one DER for one system doesn’t mean you can simply replicate that process with a different DER on another system. If the other DER has different ideas about how things should be done, then you have to go in that direction for the new project.

I (thankfully) don’t live in that particular world, but that’s got to be completely frustrating.

LDRA has offered up a Compliance Management System to help with this. It’s a certification process based on a particular individual, Todd White’s, 30 years of experience as a DER. It incorporates a system of checklists, matrices, and document templates intended to speed the certification process.

It works hand in hand with their certification consulting services, which are probably helpful to ensuring that this works most seamlessly. Using a different DER would, presumably, run the risk of that DER wanting something different. You would think, if these are truly proven elements for certification, that any reasonable DER would be happy to include them into a certification plan – unless they have their own system and insist on doing it their way.

So there’s still the possibility of some “it depends” in the mix, but the goal appears to be to remove some of it.

You can find out more in their recent release.

Leave a Reply

featured blogs
Dec 1, 2020
If you'€™d asked me at the beginning of 2020 as to the chances of my replicating an 1820 Welsh dresser, I would have said '€œzero,'€ which just goes to show how little I know....
Dec 1, 2020
More package designers these days, with the increasing component counts and more complicated electrical constraints, are shifting to using a front-end schematic capture tool. As with IC and PCB... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Dec 1, 2020
UCLA’s Maxx Tepper gives us a brief overview of the Ocean High-Throughput processor to be used in the upgrade of the real-time event selection system of the CMS experiment at the CERN LHC (Large Hadron Collider). The board incorporates Samtec FireFly'„¢ optical cable ...
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...

featured video

Introduction to the fundamental technologies of power density

Sponsored by Texas Instruments

The need for power density is clear, but what are the critical components that enable higher power density? In this overview video, we will provide a deeper understanding of the fundamental principles of high-power-density designs, and demonstrate how partnering with TI, and our advanced technological capabilities can help improve your efforts to achieve those high-power-density figures.

featured paper

Tailor-made gateway processors lay the groundwork for zone architectures

Sponsored by Texas Instruments

Automotive suppliers and original equipment manufacturers are heavily investing software R&D efforts on adding new functions and features to achieve autonomy, electrification and connectivity. Still, enabling these functions by adding more electronic control units (ECUs) is not sustainable when it results in increased complexity and cost. There are two ways to consolidate and streamline ECUs within a vehicle…

Keep Reading

Featured Chalk Talk

RF Interconnect for Wireless Applications

Sponsored by Mouser Electronics and Amphenol RF

The 5G revolution puts daunting demands on antenna technology. With massive MIMO and mm wave, 5g opens a whole new era in antenna solutions. In this episode of Chalk Talk, Amelia Dalton chats with Owen Barthelmes and Kelly Freeman of Amphenol RF about 5G antenna technology, and how Amphenol RF’s HD-EFI connector solution can help you with your next 5G design.

Click here for more info about Amphenol RF 5G Wireless Connectors