editor's blog
Subscribe Now

Pressing Vinyl (Or Something Similar)

You’d think a complete new technology for patterning silicon would merit a long, involved story. And yet it’s just not that complicated. (Easy for me to say…) One of the up-and-coming lithography processes under development is called “nanoimprint lithography” (NIL). It might be hard to imagine that this would work, but, just like it sounds, it involves taking a master “stamp” and impressing it into a liquid resist.

You then harden the resist with some exposure to UV light and release the master. The pattern on the wafer can then direct further more standard processing.

The crazy thing about this is that nanometer-scale features can print using a printer for stickers. You’d think that the liquid might have trouble conforming to such miniscule hollows in the template. And some of the issues you might think could arise – like parts of the pattern slumping or collapsing after the template is removed – truly are issues that are being studied and addressed.

Right now, researchers are working in the 26-nm realm (according to presentations at SPIE Litho), but they are trying to use the same process as HGST used for their hard drive project – creating working templates from a master template. Quality is still a challenge for those working templates, making this most suitable for applications having large-scale repeated features for which redundancy can be provided for repair.

The presenter from Dai Nippon Printing said that full production is targeted for two years out. We’ll continue to track it… If you get the SPIE Litho proceedings, you can find more in paper 8680-2.

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

Featured Chalk Talk

RX23W Bluetooth

Sponsored by Mouser Electronics and Renesas

Adding Bluetooth to your embedded design can be tricky for IoT developers. Bluetooth 5 brings a host of new capabilities that make Bluetooth integration more compelling than ever. In this episode of Chalk Talk, Amelia Dalton chats with Michael Sarpa from Renesas about the cool capabilities of Bluetooth 5, and how you can easily integrate them into your next project.

More information about Renesas Electronics RX23W 32-bit Microcontrollers