editor's blog
Subscribe Now

Directing DSA

DSA – Directed Self Assembly – is 2/3 natural and 1/3 artificial. The “self assembly” part (two of the three words, to make the scoring clear) is a natural phenomenon governing how mutually immiscible materials will resolve their differences in staking out territory.

It’s the “directed” part that makes it a useful tool. We’ve looked before at some basics for controlling how to create lines, for instance. But actual circuit patterns will be more complex, and several SPIE Litho presentations focused on different ways of affecting the outcome of the self-assembly process.

MIT’s Professor Ross, for example, talked about using posts to direct the outcome. To help bias what goes where, they would “functionalize” the posts by “brushing” them with one or the other of the block copolymers, establishing an affinity for one and a “don’t go there” for the other. The big question then becomes, where to place these posts?

Given a set of posts, there are some formidable-sounding techniques for calculating what the impact will be and how the block copolymers will lay out: Self-Consistent Field Theory (or Mean Field Theory) and Dissipative Particle Dynamics, both of which deal with reducing complex fields to particles to simplify the modeling.

But the real question is, if you want a given pattern, how do you go backwards to figure out the positioning and functionalizing of the posts? Apparently, the results aren’t going to be intuitive. For example, if you want to create a T-shaped structure, you need to omit a post from the center. Go figure.

So at this point, it appears there isn’t a deterministic path to calculate where the posts should be; they used a Monte Carlo approach to back into the solution. Which may end up being satisfactory for a while or for small circuits, but for an entire large-scale SoC-scale design, I would assume (and, to be clear, this is conjecture on my part) that some separability would apply such that you could partition the entire thing into smaller solvable regions, but you’d need to be able to deal with the region boundaries to account for their interactions.

The bottom line here is that, as DSA develops into a viable production process, there will be new challenges for EDA folks to help turn circuits into DSA guiding patterns.

If you have the SPIE Litho proceedings, you can find more of the MIT presentation in paper 8680-1.

Leave a Reply

featured blogs
Jul 9, 2020
I just read '€œEmpty World'€ by John Christopher, and I'€™m sure you will be as amazed as I to discover that this book has a hint of a sniff of the post-apocalyptic about it....
Jul 9, 2020
It happens all the time. We'€™re online with a designer and we'€™re looking at a connector in our picture search. He says '€œI need a connector that looks just like this one, but '€¦'€ and then he goes on to explain something he needs that'€™s unique to his desig...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Chalk Talk

Wide Band Gap: Silicon Carbide

Sponsored by Mouser Electronics and ON Semiconductor

Wide bandgap materials such as silicon carbide are revolutionizing the power industry. From electric vehicles and charging stations to solar power to industrial power supplies, wide bandgap brings efficiency, improved thermal performance, size reduction, and more. In this episode of Chalk Talk, Amelia Dalton chats with Brandon Becker from ON Semiconductor about the advantages of silicon carbide diodes and MOSFETs.

Click here for more information about ON Semiconductor Wide Bandgap SiC Devices