editor's blog
Subscribe Now

Directing DSA

DSA – Directed Self Assembly – is 2/3 natural and 1/3 artificial. The “self assembly” part (two of the three words, to make the scoring clear) is a natural phenomenon governing how mutually immiscible materials will resolve their differences in staking out territory.

It’s the “directed” part that makes it a useful tool. We’ve looked before at some basics for controlling how to create lines, for instance. But actual circuit patterns will be more complex, and several SPIE Litho presentations focused on different ways of affecting the outcome of the self-assembly process.

MIT’s Professor Ross, for example, talked about using posts to direct the outcome. To help bias what goes where, they would “functionalize” the posts by “brushing” them with one or the other of the block copolymers, establishing an affinity for one and a “don’t go there” for the other. The big question then becomes, where to place these posts?

Given a set of posts, there are some formidable-sounding techniques for calculating what the impact will be and how the block copolymers will lay out: Self-Consistent Field Theory (or Mean Field Theory) and Dissipative Particle Dynamics, both of which deal with reducing complex fields to particles to simplify the modeling.

But the real question is, if you want a given pattern, how do you go backwards to figure out the positioning and functionalizing of the posts? Apparently, the results aren’t going to be intuitive. For example, if you want to create a T-shaped structure, you need to omit a post from the center. Go figure.

So at this point, it appears there isn’t a deterministic path to calculate where the posts should be; they used a Monte Carlo approach to back into the solution. Which may end up being satisfactory for a while or for small circuits, but for an entire large-scale SoC-scale design, I would assume (and, to be clear, this is conjecture on my part) that some separability would apply such that you could partition the entire thing into smaller solvable regions, but you’d need to be able to deal with the region boundaries to account for their interactions.

The bottom line here is that, as DSA develops into a viable production process, there will be new challenges for EDA folks to help turn circuits into DSA guiding patterns.

If you have the SPIE Litho proceedings, you can find more of the MIT presentation in paper 8680-1.

Leave a Reply

featured blogs
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Unique AMS Emulation Technology

Sponsored by Synopsys

Learn about Synopsys' collaboration with DARPA and other partners to develop a one-of-a-kind, high-performance AMS silicon verification capability. Please watch the video interview or read it online.

Read the interview online:

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

224 Gbps Data Rates: Separating Fact from Fiction

Sponsored by Samtec

Data rates are getting faster with each passing year. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns from Samtec to separate fact from fiction when it comes to 224 Gbps data rates. They take a closer look at the design challenges, the tradeoffs, and architectural decisions that we will need to consider when designing a 224 Gbps design. They also investigate the variety of interconnect solutions that Samtec offers for your next 224 Gbps design.

Click here for more information about Silicon-to-Silicon Application Solutions from Samtec