editor's blog
Subscribe Now

An Acid Trip

When you think of a high-acid environment, what do you think of? That can of soda? Lemon juice? Your stomach? Battery acid? Well, to review, neutral pH is 7. Your stomach will have a pH of 1.5 to 3.5, presumably depending on how much soda or lemon juice or Thai-spicy tom yum gai you just had. Coca-Cola Classic is around 2.5. Lemon juice: 2.0. Battery acid: 1. It’s hard to imagine electronics functioning in a bath of any of those tongue ticklers.

But there’s an environment that’s even worse. One within which an electronic component must operate. And you might never expect it. In fact, many folks didn’t expect it. It can have a pH of 0.5 or less. It’s car exhaust. And it’s not all gaseous. It can make mincemeat of your chip in a couple months. Who knew…

Certainly not the many folks trying to build pressure sensors for that environment. Sensata has just announced a relative pressure sensor for this application – and even they didn’t realize this when they started.

There are actually a couple things that they’ve done that others have had trouble with. One is simply getting this to work in such an environment; the other is doing it with a single element – other folks apparently use two pressure sensing elements (and measure the difference between them).

The Sensata approach is a two-port sensor, with one sealed port on each side of a piezo-resistive element. Each port exposes the pressure of one of the environments to be compared, so the element is, by definition, providing the relative pressure difference. The element, which, of course, has a backside etch so the membrane is accessible to front and back, is mounted in a ceramic carrier.

Then there’s the bit about the acid. There are lots of things that can be attacked, most of which are on the logic that makes sense out of the raw pressure measurement. In other words, CMOS. Much of it can be protected by suitable passivation, but you still have to get the signals in and out, and that takes metal. And, no matter how much you protect everything else, that metal isn’t going to like lots of acid.

So rather than having that logic on the same chip as the element or an ASIC collocated with the element, they put the ASIC away from the element, outside of the corrosive environment. That minimizes the part that has to be robust and protects the delicate bits.

You can find more in their release

Leave a Reply

featured blogs
Jul 17, 2025
Why do the links in Outlook emails always open in the Microsoft Edge web browser, even if you have another browser set as your default?...

Libby's Lab

Libby's Lab - Scopes out Littelfuse C&K Aerospace AeroSplice Connectors

Sponsored by Mouser Electronics and Littelfuse

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Littelfuse C&K Aerospace Aerosplice Connectors, available at Mouser.com! These connectors are ideal for high-reliability easy-to-use wire-to-wire connections in aerospace applications. Keep your circuits charged and your ideas sparking!

Click here for more information

featured paper

Agilex™ 3 vs. Certus-N2 Devices: Head-to-Head Benchmarking on 10 OpenCores Designs

Sponsored by Altera

Explore how Agilex™ 3 FPGAs deliver up to 2.4× higher performance and 30% lower power than comparable low-cost FPGAs in embedded applications. This white paper benchmarks real workloads, highlights key architectural advantages, and shows how Agilex 3 enables efficient AI, vision, and control systems with headroom to scale.

Click to read more

featured chalk talk

Vector Funnel Methodology for Power Analysis from Emulation to RTL to Signoff
Sponsored by Synopsys
The shift left methodology can help lower power throughout the electronic design cycle. In this episode of Chalk Talk, William Ruby from Synopsys and Amelia Dalton explore the biggest energy efficiency design challenges facing engineers today, how Synopsys can help solve a variety of energy efficiency design challenges and how the shift left methodology can enable consistent power efficiency and power reduction.
Jul 29, 2024
258,908 views