editor's blog
Subscribe Now

An Acid Trip

When you think of a high-acid environment, what do you think of? That can of soda? Lemon juice? Your stomach? Battery acid? Well, to review, neutral pH is 7. Your stomach will have a pH of 1.5 to 3.5, presumably depending on how much soda or lemon juice or Thai-spicy tom yum gai you just had. Coca-Cola Classic is around 2.5. Lemon juice: 2.0. Battery acid: 1. It’s hard to imagine electronics functioning in a bath of any of those tongue ticklers.

But there’s an environment that’s even worse. One within which an electronic component must operate. And you might never expect it. In fact, many folks didn’t expect it. It can have a pH of 0.5 or less. It’s car exhaust. And it’s not all gaseous. It can make mincemeat of your chip in a couple months. Who knew…

Certainly not the many folks trying to build pressure sensors for that environment. Sensata has just announced a relative pressure sensor for this application – and even they didn’t realize this when they started.

There are actually a couple things that they’ve done that others have had trouble with. One is simply getting this to work in such an environment; the other is doing it with a single element – other folks apparently use two pressure sensing elements (and measure the difference between them).

The Sensata approach is a two-port sensor, with one sealed port on each side of a piezo-resistive element. Each port exposes the pressure of one of the environments to be compared, so the element is, by definition, providing the relative pressure difference. The element, which, of course, has a backside etch so the membrane is accessible to front and back, is mounted in a ceramic carrier.

Then there’s the bit about the acid. There are lots of things that can be attacked, most of which are on the logic that makes sense out of the raw pressure measurement. In other words, CMOS. Much of it can be protected by suitable passivation, but you still have to get the signals in and out, and that takes metal. And, no matter how much you protect everything else, that metal isn’t going to like lots of acid.

So rather than having that logic on the same chip as the element or an ASIC collocated with the element, they put the ASIC away from the element, outside of the corrosive environment. That minimizes the part that has to be robust and protects the delicate bits.

You can find more in their release

Leave a Reply

featured blogs
Jan 18, 2021
The DIY electronics portion AliExpress website can be a time-sink for the unwary because one tempting project leads to another....
Jan 17, 2021
https://youtu.be/mKoW8ji9_g8 Made in my kitchen (camera Ziyue Zhang) Monday: Young People Program at DATE 2021 Tuesday: IEDM Opening Keynote Wednesday: Cadence/Arm Event on Optimizing High-End Arm... [[ Click on the title to access the full blog on the Cadence Community site...
Jan 14, 2021
Learn how electronic design automation (EDA) tools & silicon-proven IP enable today's most influential smart tech, including ADAS, 5G, IoT, and Cloud services. The post 5 Key Innovations that Are Making Everything Smarter appeared first on From Silicon To Software....
Jan 13, 2021
Testing is the final step of any manufacturing process, and arguably the most important, and yet it can often be overlooked.  Releasing a poorly tested product onto the market has destroyed more than one reputation for quality, and this is even more important in an age when ...

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

Featured Chalk Talk

Passive Component Solutions for Automotive Safety Electronics

Sponsored by Mouser Electronics and AVX

In today’s demanding automotive safety applications, choosing high-quality passives with the right performance properties can make the difference between success and catastrophic failure. With issues like power quality, EMI suppression, circuit protection, and antennas, getting the right passives is critical. In this episode of Chalk Talk, Amelia Dalton chats with Daniel West of AVX about how to choose the right passives for safety-critical automotive applications.

Click here for more information about AVX Solutions for Automotive Safety Electronics