editor's blog
Subscribe Now

Room-Temp Covalent Wafer Bonding

MEMS elements are delicate. They sit there in their little cavities, expecting to operate in some sort of controlled environment – perhaps a particular gas or pressure (or lack of it). And if they’re collocated with CMOS circuitry, then they need to be protected from any further processing steps. In other words, they need to be sealed off from the rest of the world. And wafer bonding is a common way to do that: bring another wafer (perhaps with etched features) face-to-face with the working wafer and get them to bond.

Covalent molecular bonds are the strongest; if you bring two silicon wafers together, for example, the ideal is to have the silicon atoms at the surface of each wafer bond covalently with their counterparts on the other wafer so that the whole thing starts to look like a continuous crystal. That’s the ideal.

Doing this isn’t trivial, of course, since the surfaces are likely to have imperfections and contaminants. So surface preparation has been an important part of the wafer bonding process. It has also involved intermediaries like water that establish a preliminary bond; an anneal then precipitates the reactions that result in the appropriate covalent bonds and out-diffusion of any extraneous elements.

Initially, high temperatures were required for the annealing. But, of course, anything over 450 °C won’t sit well with any CMOS that might be in place, so various surface preparation techniques have been devised to get the anneal temps down below that threshold.

But even these temperatures can be an issue for bonding unlike materials, or for wafers that have unlike materials in the stack, where stresses can result from differing rates of thermal expansion during the anneal process.

EVG has recently announced a new way of preparing the surface so that covalent bonding occurs immediately, at room temperature. To be clear, they have announced that they have this new process; they haven’t announced what it is; they’re still being coy on that. This eliminates the annealing step completely, and therefore the thermal expansion issue as well.

Equipment using this new technique should ship sometime this year. You can find out more in their release.

Leave a Reply

featured blogs
Jul 20, 2024
If you are looking for great technology-related reads, here are some offerings that I cannot recommend highly enough....

featured video

How NV5, NVIDIA, and Cadence Collaboration Optimizes Data Center Efficiency, Performance, and Reliability

Sponsored by Cadence Design Systems

Deploying data centers with AI high-density workloads and ensuring they are capable for anticipated power trends requires insight. Creating a digital twin using the Cadence Reality Digital Twin Platform helped plan the deployment of current workloads and future-proof the investment. Learn about the collaboration between NV5, NVIDIA, and Cadence to optimize data center efficiency, performance, and reliability. 

Click here for more information about Cadence Data Center Solutions

featured chalk talk

Reliable Connections for Rugged Handling
Sponsored by Mouser Electronics and Amphenol
Materials handling is a growing market for electronic designs. In this episode of Chalk Talk, Amelia Dalton and Jordan Grupe from Amphenol Industrial explore the variety of connectivity solutions that Amphenol Industrial offers for materials handling designs. They also examine the DIN charging solutions that Amphenol Industrial offers and the specific applications where these connectors can be a great fit.
Dec 5, 2023
29,881 views