editor's blog
Subscribe Now

MIMO: Hardware or Software?

A while back we covered CEVA’s move to multicore for their communications-oriented XC architecture. One of the motivating elements was the complexity of requirements for features like MIMO, the ability to use more than one antenna – and multiple channels formed by the product of the number of sending and receiving antennas. They say that using a software approach provides the flexibility needed for the variety of options, that there are too many differences between options to implement in hardware: there would be too much unshared hardware, and it would be inefficient.

Sounds reasonable. But then came a completely separate announcement from Quantenna. They’re also doing MIMO, but in hardware. They can handle up to 4×4 MIMO (that is, 4 antennas sending, 4 receiving; 16 channels). And they say that it’s not reasonable to expect to be able to meet the performance requirements without doing it in hardware.

Both companies seem to agree on the complexity of the standards they’re implementing. The thing about such WiFi communication is that the environment is constantly changing, and you have to constantly re-evaluate which channels are working best and where to send things. This re-optimization is checked every 100 ms.

In fact, Quantenna says that, if the radar band is unpopulated, it can also be used, although they claim that most boxes don’t take advantage of this, remaining within the crowded non-radar portion, even though the radar portion has the bulk of the available bandwidth.

There is also beam-forming to be done – including “blind” beam-forming, where only one end of the channel can do it. Channel stability has to be rock solid since there’s no buffering for streaming video. Equalization has to be optimized. And in a higher layer, there’s quality-of-service (QoS) for video.

And most of this isn’t established at design time; it’s a constant real-time re-jiggering of parameters to keep things working as efficiently as possible. And it has to work alongside the earlier 802.11n and below standards. And Quantenna says they can handle all of this in hardware, without blowing the silicon budget.

You can imagine that being able to do it in software might be quite convenient and space-efficient. You can also imagine that hardware would provide much higher performance. So which is best?

Rather than get into the middle of adjudicating this myself, I offer both sides the opportunity to state their cases in the comments below. And any of the rest of you that have something constructive to contribute to the discussion, please do.

Meanwhile, you can get more details on Quantenna’s announcement in their release.

Leave a Reply

featured blogs
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 29, 2022
Smart manufacturing '“ the use of nascent technology within the industrial Internet of things (IIoT) to address traditional manufacturing challenges '“ is leading a supply chain revolution, resulting in smart, connected, and intelligent environments, capable of self-operati...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Maximizing Power Savings During Chip Implementation with Dynamic Refresh of Vectors

Sponsored by Synopsys

Drive power optimization with actual workloads and continually refresh vectors at each step of chip implementation for maximum power savings.

Learn more about Energy-Efficient SoC Solutions

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Enabling Digital Transformation in Electronic Design with Cadence Cloud

Sponsored by Cadence Design Systems

With increasing design sizes, complexity of advanced nodes, and faster time to market requirements - design teams are looking for scalability, simplicity, flexibility and agility. In today’s Chalk Talk, Amelia Dalton chats with Mahesh Turaga about the details of Cadence’s end to end cloud portfolio, how you can extend your on-prem environment with the push of a button with Cadence’s new hybrid cloud and Cadence’s Cloud solutions you can help you from design creation to systems design and more.

Click here for more information about Cadence Cloud Portfolio