editor's blog
Subscribe Now

MIMO: Hardware or Software?

A while back we covered CEVA’s move to multicore for their communications-oriented XC architecture. One of the motivating elements was the complexity of requirements for features like MIMO, the ability to use more than one antenna – and multiple channels formed by the product of the number of sending and receiving antennas. They say that using a software approach provides the flexibility needed for the variety of options, that there are too many differences between options to implement in hardware: there would be too much unshared hardware, and it would be inefficient.

Sounds reasonable. But then came a completely separate announcement from Quantenna. They’re also doing MIMO, but in hardware. They can handle up to 4×4 MIMO (that is, 4 antennas sending, 4 receiving; 16 channels). And they say that it’s not reasonable to expect to be able to meet the performance requirements without doing it in hardware.

Both companies seem to agree on the complexity of the standards they’re implementing. The thing about such WiFi communication is that the environment is constantly changing, and you have to constantly re-evaluate which channels are working best and where to send things. This re-optimization is checked every 100 ms.

In fact, Quantenna says that, if the radar band is unpopulated, it can also be used, although they claim that most boxes don’t take advantage of this, remaining within the crowded non-radar portion, even though the radar portion has the bulk of the available bandwidth.

There is also beam-forming to be done – including “blind” beam-forming, where only one end of the channel can do it. Channel stability has to be rock solid since there’s no buffering for streaming video. Equalization has to be optimized. And in a higher layer, there’s quality-of-service (QoS) for video.

And most of this isn’t established at design time; it’s a constant real-time re-jiggering of parameters to keep things working as efficiently as possible. And it has to work alongside the earlier 802.11n and below standards. And Quantenna says they can handle all of this in hardware, without blowing the silicon budget.

You can imagine that being able to do it in software might be quite convenient and space-efficient. You can also imagine that hardware would provide much higher performance. So which is best?

Rather than get into the middle of adjudicating this myself, I offer both sides the opportunity to state their cases in the comments below. And any of the rest of you that have something constructive to contribute to the discussion, please do.

Meanwhile, you can get more details on Quantenna’s announcement in their release.

Leave a Reply

featured blogs
Jun 8, 2023
Learn how our EDA tools accelerate 5G SoC design for customer Viettel, who designs chips for 5G base stations and drives 5G rollout across Vietnam. The post Customer Spotlight: Viettel Accelerates Design of Its First 5G SoC with Synopsys ASIP Designer appeared first on New H...
Jun 8, 2023
Radial compressors, also known as radial fans or blowers, are primarily used for compression purposes. Radial blades attached to a rotating impeller draw air into the unit's center. They are well-suited for high-pressure applications, where their efficient design can sav...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....

featured video

Synopsys Solution for Comprehensive Low Power Verification

Sponsored by Synopsys

The growing complexity of power management in chips requires a holistic approach to UPF power-intent generation and low power verification. Learn how Synopsys addresses these requirements with a comprehensive solution for low-power verification.

Learn more about Synopsys’ Energy-Efficient SoCs Solutions

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The Cadence® Celsius™ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

Enable Sustainable Enterprises of the Future
Did you know that buildings are responsible for 40% of global energy consumption and 33% of greenhouse gas emissions? One way we can help both modernize and increase sustainability in our buildings is by adding 10BASE-T1L to our building controllers. In this episode of Chalk Talk, Amelia Dalton chats with Salem Gharbi from Analog Devices about how we can enable sustainable enterprises with ethernet connected building controllers. They examine the10BASE-T1L flexible design solutions that Analog Devices offers, how exiting?building infrastructure can take advantage of 10BASE-T1L and how you can get started on your next sustainable enterprise journey.
Dec 20, 2022
22,321 views