editor's blog archive
Subscribe Now

A Hardened Hub

There’s a new 9-axis motion sensor hub in town. Called SENtral, it’s a collaboration between PNI Sensors, known for geomagnetic sensors and fusion, and EM Microelectronics, a division of Swatch, whose focus is on ultra-low-power circuits. And it has its own twist.

Given EM’s focus, it should come as no surprise that this hub’s claim to fame is low power: they say it uses a small fraction of the power of the next competing microcontroller-based sensor hub … Read More → "A Hardened Hub"

One + One > Two

The latest, greatest mobile standards appear to be beastly affairs. Added to the old ones, and the number of algorithms that a poor cellphone – even a smart one – has to manage becomes pretty daunting.

And features like MIMO – various permutations and combinations of multiple antennae on the sending and receiving sides – make for an array of possible algorithms that CEVA says can only be managed through a software approach. That is, you load the software you need for the algorithm required at the moment rather than hard-code every possible variant, which would simply … Read More → "One + One > Two"

Monolithic Photonics

An interesting development was announced yesterday in the photonics world. In what appears to be a first of its kind, at least commercially, Skorpios announced a monolithic tunable laser – CMOS and 3/5 bits on the same chip. This eliminates the need to have the circuitry on one chip and then drive that into a separate chip that does the lasing, with obvious integration and efficiency benefits.

Skorpios does custom photonic work for its strategic investors, and in doing this process development, they have put together what amount to photonic standard cells; they talk about opening up an … Read More → "Monolithic Photonics"

Connecting CNTs to Metal

One of the things about CNTs acting as transistors is that the current flowing through them has to get into and out of the CNT from some other substance – typically metal. That junction, as it turns out, can have significant resistance. According to a paper done by a team from Georgia Tech and MIT (Songkil Kim et al), for a single-walled CNT (SWCNT) to connect to metal, there’s a quantum limit of around 65 kΩ.

Multi-walled CNTs (MWCNTs) can provide much lower-resistance connections, but how low depends on how you do it. Sputtering or … Read More → "Connecting CNTs to Metal"

featured blogs
Oct 13, 2019
In part 3 of this blog series we looked at what typically is the longest stage in designing a PCB Routing and net tuning.  In part 4 we will finish the design process by looking at planes, and some miscellaneous items that may be required in some designs. Planes Figure 8...
Oct 13, 2019
https://youtu.be/8BM28qwHyUk Made at Arm TechCon (camera Randy Smith) Monday: What Is Quantum Supremacy? Tuesday: It's Ada Lovelace Day Today Wednesday: The First Woman to Receive the Kaufman... [[ Click on the title to access the full blog on the Cadence Community site...
Oct 11, 2019
The FPGA (or ACAP) universe gathered at the San Jose Fairmount last week during the Xilinx Developer Forum. Engineers, data scientists, analysts, distributors, alliance partners and more came to learn about the latest hardware, software and system level solutions from Xilinx....
Oct 11, 2019
Have you ever stayed awake at night pondering palindromic digital clock posers?...
Oct 11, 2019
[From the last episode: We looked at subroutines in computer programs.] We saw a couple weeks ago that some memories are big, but slow (flash memory). Others are fast, but not so big '€“ and they'€™re power-hungry to boot (SRAM). This sets up an interesting problem. When ...