editor's blog
Subscribe Now

One + One > Two

The latest, greatest mobile standards appear to be beastly affairs. Added to the old ones, and the number of algorithms that a poor cellphone – even a smart one – has to manage becomes pretty daunting.

And features like MIMO – various permutations and combinations of multiple antennae on the sending and receiving sides – make for an array of possible algorithms that CEVA says can only be managed through a software approach. That is, you load the software you need for the algorithm required at the moment rather than hard-code every possible variant, which would simply take too much silicon.

CEVA attacks this market with their XC architecture, and they recently beefed it up by announcing a multicore version. “OK, big deal,” you might say. “I had one core, now I can have more than one. I could do that before by instantiating more than one.”

Yes and no. Going truly multicore means one more huge addition to the architecture, most of which operates in the background: cache coherency. So even if that was all they had done, that’s a lot of work in its own right.

But they appear to have gone beyond that, adding packet management and scheduling hardware, along with design tools that understands higher-level concepts like queues and buffers. And frankly, at least conceptually, this starts to look a lot like a Cavium OCTEON chip, only with DSPs instead of RISC CPUs.

But, of course, this is IP, not hard silicon (although they have emulation boards). So you can configure things any way you want – including homogeneous and heterogeneous architectures, the latter blending DSPs and CPUs if desired.

They’ve also added floating point support; they point to the MIMO algorithms as a particularly compelling reason to move beyond fixed-point.

So it’s a larger leap than just adding another core or two. You can see more of the speeds and feeds in their release.

Leave a Reply

featured blogs
Mar 21, 2023
We explain computational lithography and explore how our partnership with NVIDIA accelerates semiconductor scaling and the chip design flow in the AI age. The post How Synopsys and NVIDIA Are Accelerating Semiconductor Scaling in the AI Age appeared first on New Horizons for...
Mar 20, 2023
Electronic design has evolved over the years to provide methods for optimizing power, space, and energy needs for the most demanding market applications in areas including hyperscale computing, consumer, 5G communications, automotive, mobile, aerospace, industrial, and health...
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

Level Up Your Knowledge!

Sponsored by Mouser Electronics

Feeling behind in the game? Mouser's newsletter and technical resource subscriptions will ensure that your skills are next level! Set your preferences and customize your subscription to power up your knowledge today!

Click here for more information

featured chalk talk

Enable Sustainable Enterprises of the Future
Did you know that buildings are responsible for 40% of global energy consumption and 33% of greenhouse gas emissions? One way we can help both modernize and increase sustainability in our buildings is by adding 10BASE-T1L to our building controllers. In this episode of Chalk Talk, Amelia Dalton chats with Salem Gharbi from Analog Devices about how we can enable sustainable enterprises with ethernet connected building controllers. They examine the10BASE-T1L flexible design solutions that Analog Devices offers, how exiting?building infrastructure can take advantage of 10BASE-T1L and how you can get started on your next sustainable enterprise journey.
Dec 20, 2022
12,350 views