editor's blog
Subscribe Now

An AC-Biased Microphone

I’ll round out the last of the things that caught my attention at this year’s ISSCC with a proposal and implementation of an AC-biased microphone. This is done based on projections that the biasing resistor for a traditional DC approach will head into ridiculously high territory – teraohms and higher.

The team, from NXP and Delft University, lists a number of problems that this causes.

  • The connection between the MEMS die and the ASIC can easily pick up stray electrical noise due to its high impedance, meaning expensive packaging is required to shield this node.
  • Creating a poly resistor of this size would be enormous; instead, active devices biased below their turn-on voltages are used. But leakage currents from neighboring ESD structures can find their way through these, with the ultimate result being increased noise.
  • They say that chopping can’t be used to reduce flicker noise because of the extra input current the switching would cause; increased transistor sizes are needed instead.
  • The on-chip bias generator will typically be a charge pump, and ripple noise could push the shut-off active devices used as resistors to turn on slightly; therefore large filtering caps are needed.

Their approach is differential, and they modulate the signal while cancelling out the carrier using cross-coupling caps; there are, in fact, three caps that have to be tuned to match the microphone sensing cap, and they have an 11-bit register for each of them.

Critically, feedback resistors are used to set the common-mode bias level; that and the fact that their contribution to in-band noise is now low due to the modulation mean that resistor values can be brought back down well below a gigaohm.

While you might expect the increased complexity to make the ASIC larger, in fact quite the reverse is true (presumably due to smaller components): the ASIC is 1/12 the size of the current state of the art. Expensive shielding is also no longer required to reject external noise.

They weren’t overwhelmed by the SNR they achieved, in the 58/60-dB range, but they commented that, with some focus, they could easily get to 64/65-dB levels.

For those of you with the proceedings, you can get much more detail in session 22.2.

Leave a Reply

featured blogs
Oct 28, 2021
Spectre 21.1 ISR2 and Virtuoso IC6.1.8 ISR21 introduce the new Voltus TM -XFi Custom Power Integrity Solution, a new transistor-level electromigration and IR drop (EMIR) solution that provides a... [[ Click on the title to access the full blog on the Cadence Community site. ...
Oct 27, 2021
ASIC hardware verification is a complex process; explore key challenges and bug hunting, debug, and SoC verification solutions to satisfy sign-off requirements. The post The Quest for Bugs: The Key Challenges appeared first on From Silicon To Software....
Oct 20, 2021
I've seen a lot of things in my time, but I don't think I was ready to see a robot that can walk, fly, ride a skateboard, and balance on a slackline....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

Maxim Integrated is now part of Analog Devices

Sponsored by Maxim Integrated (now part of Analog Devices)

What if the march of progress suddenly broke into a full-in sprint?

See What If: analog.com/Maxim

featured paper

Is your application protected from glitches?

Sponsored by Maxim Integrated (now part of Analog Devices)

Medical, industrial, and consumer devices require reliable operation, free from startup glitches. With the glitch-free operation available in the MAX16162, Maxim’s nanoPower supervisor IC, designers now have the means to prevent system startup glitches.

Click to read more

featured chalk talk

The Gateway to Connected Intelligent Vehicles

Sponsored by Mouser Electronics and NXP Semiconductors

Connectivity is going to play a vital role in the future of connected and autonomous vehicles. One of the keys to the success of our future automotive designs will be the incorporation of service-oriented gateways. In this episode of Chalk Talk, Amelia Dalton chats with Brian Carlson from NXP about the role that service-oriented gateways will play in the future of connected and autonomous vehicles and the details of NXP’s new S32G2 vehicle network processors that are going to make all of this possible.

Click here for more information about the NXP Semiconductors S32G2 Vehicle Network Processor