editor's blog
Subscribe Now

An AC-Biased Microphone

I’ll round out the last of the things that caught my attention at this year’s ISSCC with a proposal and implementation of an AC-biased microphone. This is done based on projections that the biasing resistor for a traditional DC approach will head into ridiculously high territory – teraohms and higher.

The team, from NXP and Delft University, lists a number of problems that this causes.

  • The connection between the MEMS die and the ASIC can easily pick up stray electrical noise due to its high impedance, meaning expensive packaging is required to shield this node.
  • Creating a poly resistor of this size would be enormous; instead, active devices biased below their turn-on voltages are used. But leakage currents from neighboring ESD structures can find their way through these, with the ultimate result being increased noise.
  • They say that chopping can’t be used to reduce flicker noise because of the extra input current the switching would cause; increased transistor sizes are needed instead.
  • The on-chip bias generator will typically be a charge pump, and ripple noise could push the shut-off active devices used as resistors to turn on slightly; therefore large filtering caps are needed.

Their approach is differential, and they modulate the signal while cancelling out the carrier using cross-coupling caps; there are, in fact, three caps that have to be tuned to match the microphone sensing cap, and they have an 11-bit register for each of them.

Critically, feedback resistors are used to set the common-mode bias level; that and the fact that their contribution to in-band noise is now low due to the modulation mean that resistor values can be brought back down well below a gigaohm.

While you might expect the increased complexity to make the ASIC larger, in fact quite the reverse is true (presumably due to smaller components): the ASIC is 1/12 the size of the current state of the art. Expensive shielding is also no longer required to reject external noise.

They weren’t overwhelmed by the SNR they achieved, in the 58/60-dB range, but they commented that, with some focus, they could easily get to 64/65-dB levels.

For those of you with the proceedings, you can get much more detail in session 22.2.

Leave a Reply

featured blogs
Dec 6, 2023
Optimizing a silicon chip at the system level is crucial in achieving peak performance, efficiency, and system reliability. As Moore's Law faces diminishing returns, simply transitioning to the latest process node no longer guarantees substantial power, performance, or c...
Dec 6, 2023
Explore standards development and functional safety requirements with Jyotika Athavale, IEEE senior member and Senior Director of Silicon Lifecycle Management.The post Q&A With Jyotika Athavale, IEEE Champion, on Advancing Standards Development Worldwide appeared first ...
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured webinar

Rapid Learning: Purpose-Built MCU Software Tools for Data-Driven Embedded IoT Systems

Sponsored by ITTIA

Are you developing an MCU application that captures data of all kinds (metrics, events, logs, traces, etc.)? Are you ready to reduce the difficulties and complications involved in developing an event- and data-centric embedded system? This webinar will quickly introduce you to excellent MCU-specific software options for developing your next-generation data-driven IoT systems. You will also learn how to recognize and overcome data management obstacles. Register today as seats are limited!

Register Now!

featured chalk talk

Accessing AWS IoT Services Securely over LTE-M
Developing a connected IoT design from scratch can be a complicated endeavor. In this episode of Chalk Talk, Amelia Dalton, Harald Kröll from u-blox, Lucio Di Jasio from AWS, and Rob Reynolds from SparkFun Electronics examine the details of the AWS IoT ExpressLink SARA-R5 starter kit. They explore the common IoT development design challenges that AWS IoT ExpressLink SARA-R5 starter kit is looking to solve and how you can get started using this kit in your next connected IoT design.
Oct 26, 2023
5,007 views