editor's blog
Subscribe Now

An AC-Biased Microphone

I’ll round out the last of the things that caught my attention at this year’s ISSCC with a proposal and implementation of an AC-biased microphone. This is done based on projections that the biasing resistor for a traditional DC approach will head into ridiculously high territory – teraohms and higher.

The team, from NXP and Delft University, lists a number of problems that this causes.

  • The connection between the MEMS die and the ASIC can easily pick up stray electrical noise due to its high impedance, meaning expensive packaging is required to shield this node.
  • Creating a poly resistor of this size would be enormous; instead, active devices biased below their turn-on voltages are used. But leakage currents from neighboring ESD structures can find their way through these, with the ultimate result being increased noise.
  • They say that chopping can’t be used to reduce flicker noise because of the extra input current the switching would cause; increased transistor sizes are needed instead.
  • The on-chip bias generator will typically be a charge pump, and ripple noise could push the shut-off active devices used as resistors to turn on slightly; therefore large filtering caps are needed.

Their approach is differential, and they modulate the signal while cancelling out the carrier using cross-coupling caps; there are, in fact, three caps that have to be tuned to match the microphone sensing cap, and they have an 11-bit register for each of them.

Critically, feedback resistors are used to set the common-mode bias level; that and the fact that their contribution to in-band noise is now low due to the modulation mean that resistor values can be brought back down well below a gigaohm.

While you might expect the increased complexity to make the ASIC larger, in fact quite the reverse is true (presumably due to smaller components): the ASIC is 1/12 the size of the current state of the art. Expensive shielding is also no longer required to reject external noise.

They weren’t overwhelmed by the SNR they achieved, in the 58/60-dB range, but they commented that, with some focus, they could easily get to 64/65-dB levels.

For those of you with the proceedings, you can get much more detail in session 22.2.

Leave a Reply

featured blogs
May 24, 2022
Today is going to be my monthly update. This normally runs on the last Friday of the month, but that's a Cadence Global Recharge Day, so we will all be off. For various other reasons, I need to... ...
May 20, 2022
I'm very happy with my new OMTech 40W CO2 laser engraver/cutter, but only because the folks from Makers Local 256 helped me get it up and running....
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...

featured video

Building safer robots with computer vision & AI

Sponsored by Texas Instruments

Watch TI's demo to see how Jacinto™ 7 processors fuse deep learning and traditional computer vision to enable safer autonomous mobile robots.

Watch demo

featured paper

Intel Agilex FPGAs Deliver Game-Changing Flexibility & Agility for the Data-Centric World

Sponsored by Intel

The new Intel® Agilex™ FPGA is more than the latest programmable logic offering—it brings together revolutionary innovation in multiple areas of Intel technology leadership to create new opportunities to derive value and meaning from this transformation from edge to data center. Want to know more? Start with this white paper.

Click to read more

featured chalk talk

NEUTRIK Fiber Optic Solutions

Sponsored by Mouser Electronics and Neutrik

The advantages and benefits of fiber optics are a mile long…but how can you design with them? How can you clean them? How do you repair them? Need a bit of a refresher? In this episode of Chalk Talk, Amelia Dalton chats with David Kuklinski from Neutrik about the OpticalCon advanced, OpticalCon LITE and Opticalcon DragonFly fiber optic solutions from Neutrik. They take a closer look at what benefits each of these solutions brings to the table, what kind of configurations are offered with each of these fiber optic solutions and what kind of performance you can expect when using them in your next design.

Click here for more information about Neutrik opticalCON® Fiber Optic Connector System