editor's blog
Subscribe Now

An AC-Biased Microphone

I’ll round out the last of the things that caught my attention at this year’s ISSCC with a proposal and implementation of an AC-biased microphone. This is done based on projections that the biasing resistor for a traditional DC approach will head into ridiculously high territory – teraohms and higher.

The team, from NXP and Delft University, lists a number of problems that this causes.

  • The connection between the MEMS die and the ASIC can easily pick up stray electrical noise due to its high impedance, meaning expensive packaging is required to shield this node.
  • Creating a poly resistor of this size would be enormous; instead, active devices biased below their turn-on voltages are used. But leakage currents from neighboring ESD structures can find their way through these, with the ultimate result being increased noise.
  • They say that chopping can’t be used to reduce flicker noise because of the extra input current the switching would cause; increased transistor sizes are needed instead.
  • The on-chip bias generator will typically be a charge pump, and ripple noise could push the shut-off active devices used as resistors to turn on slightly; therefore large filtering caps are needed.

Their approach is differential, and they modulate the signal while cancelling out the carrier using cross-coupling caps; there are, in fact, three caps that have to be tuned to match the microphone sensing cap, and they have an 11-bit register for each of them.

Critically, feedback resistors are used to set the common-mode bias level; that and the fact that their contribution to in-band noise is now low due to the modulation mean that resistor values can be brought back down well below a gigaohm.

While you might expect the increased complexity to make the ASIC larger, in fact quite the reverse is true (presumably due to smaller components): the ASIC is 1/12 the size of the current state of the art. Expensive shielding is also no longer required to reject external noise.

They weren’t overwhelmed by the SNR they achieved, in the 58/60-dB range, but they commented that, with some focus, they could easily get to 64/65-dB levels.

For those of you with the proceedings, you can get much more detail in session 22.2.

Leave a Reply

featured blogs
Jan 26, 2021
I could doubtless extend this series all year long, covering the important updates, improvements, and completely new functionality that is continually being added to the Allegro ® Package... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Jan 26, 2021
We just started our next round of gEEk® spEEk online seminars. gEEk spEEk is a series of free online seminars covering a wide-range of SI-related topics, all commercial-free. Stefaan Sercu, Samtec Signal Integrity R&D Engineer, recently presented “Impedance Correc...
Jan 25, 2021
In which we meet the Photomath calculator, which works with photos of your equations, and the MyScript calculator, which allows you to draw equations with your finger....
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Common Design Pitfalls When Designing With Hall 2D Sensors And How To Avoid Them

Sponsored by Texas Instruments

This article discusses three widespread application issues in industrial and automotive end equipment – rotary encoding, in-plane magnetic sensing, and safety-critical – that can be solved more efficiently using devices with new features and higher performance. We will discuss in which end products these applications can be found and also provide a comparison with our traditional digital Hall-effect sensors showing how the new releases complement our existing portfolio.

Click here to download the whitepaper

Featured Chalk Talk

Transforming 400V Power for SELV Systems

Sponsored by Mouser Electronics and Vicor

Converting from distribution-friendly voltages like 400V down to locally-useful voltages can be a tough engineering challenge. In SELV systems, many teams turn to BCM converter modules because of their efficiency, form factor, and ease of design-in. In this episode of Chalk Talk, Amelia Dalton chats with Ian Masza of Vicor about transforming 400V into power for SELV systems.

Click here for more information about Products by Vicor