editor's blog
Subscribe Now

Close Enough?

Not long ago, in our coverage of 3D vision, we discussed time-of-flight as one of the approaches to gauging distance. Even though it and the other 3D vision technologies are gunning for low-cost applications, it’s easy, at this point, to view them as exotic works in progress.

Well, time of flight is now being put to use for the most prosaic of duties: making sure your cheek doesn’t accidentally hang up on you.

Of course, our phones already have this feature via their proximity sensor, installed specifically for this purpose. It detects when the phone is near the face and shuts down the touchscreen, both saving power and rendering it immune to the random input it would otherwise get as it hit your cheek now and again.

As STMicroelectronics sees it, however, the existing way of judging proximity leaves something to be desired. Right now, it’s a simple process of sending light out and measuring how much gets reflected back, a method that can depend on a lot of factors besides proximity. How often such sensors fail isn’t clear to me, but ST has come forward with a new approach: using time of flight to measure how long it takes the light (regardless of the quantity of light) to make a round trip.

They do this by co-packaging an IR LED emitter, an “ultra-fast” light detector, and the circuitry needed to calculate the distance from the measurements. It also contains a wide-dynamic-range ambient light sensor. 

Is all of that needed just to keep your phone from getting too cheeky? Well, it’s clear that that’s simply the “marquee” function they address. On the assumption that you can do a lot more interesting stuff if you can measure with reasonable accuracy how far away something is (as opposed to a more binary near/far assessment), they’re betting that phone makers will want to include it so that both they and enterprising apps writers will come up with all kinds of interesting new things to do. It changes the class of apps it can manage from digital to analog (in the sense I defined them when discussing accelerometer applications).

Used in such other applications, they’re targeting a distance range of up to 100 mm (about 4 inches for those of us that grew up with non-metric intuitive visualization). They think it will work beyond that, but they’re not committing to that at this time.

You can find more info in their release.

Leave a Reply

featured blogs
Jan 17, 2022
Today's interview features Dajana Danilovic, an application engineer based near Munich, Germany. In this video, Dajana shares about her pathway to becoming an engineer, as well as the importance of... [[ Click on the title to access the full blog on the Cadence Community sit...
Jan 13, 2022
See what's behind the boom in AI applications and explore the advanced AI chip design tools and strategies enabling AI SoCs for HPC, healthcare, and more. The post The Ins and Outs of AI Chip Design appeared first on From Silicon To Software....
Jan 12, 2022
In addition to sporting a powerful processor and supporting Bluetooth wireless communications, Seeed's XIAO BLE Sense also boasts a microphone and a 6DOF IMU....

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

Using the MAX66242 Mobile Application, the Basics

Sponsored by Analog Devices

This application note describes the basics of the near-field communication (NFC)/radio frequency identification (RFID) MAX66242EVKIT board and an application utilizing the NFC capabilities of iOS and Android® based mobile devices to exercise board functionality. It then demonstrates how the application enables the user with the ability to use the memory and secure features of the MAX66242. It also shows how to use the MAX66242 with an onboard I2C temperature sensor which demonstrates the energy harvesting feature of the device.

Click to read more

featured chalk talk

Accelerating Physical Verification Productivity Part Two

Sponsored by Synopsys

Physical verification of IC designs at today’s advanced process nodes requires an immense amount of processing power. But, getting your design and verification tools to take full advantage of the compute resources available can be a challenge. In this episode of Chalk Talk, Amelia Dalton chats with Manoz Palaparthi of Synopsys about dramatically improving the performance of your physical verification process. 

Click here for more information about Physical Verification using IC Validator