editor's blog
Subscribe Now

Close Enough?

Not long ago, in our coverage of 3D vision, we discussed time-of-flight as one of the approaches to gauging distance. Even though it and the other 3D vision technologies are gunning for low-cost applications, it’s easy, at this point, to view them as exotic works in progress.

Well, time of flight is now being put to use for the most prosaic of duties: making sure your cheek doesn’t accidentally hang up on you.

Of course, our phones already have this feature via their proximity sensor, installed specifically for this purpose. It detects when the phone is near the face and shuts down the touchscreen, both saving power and rendering it immune to the random input it would otherwise get as it hit your cheek now and again.

As STMicroelectronics sees it, however, the existing way of judging proximity leaves something to be desired. Right now, it’s a simple process of sending light out and measuring how much gets reflected back, a method that can depend on a lot of factors besides proximity. How often such sensors fail isn’t clear to me, but ST has come forward with a new approach: using time of flight to measure how long it takes the light (regardless of the quantity of light) to make a round trip.

They do this by co-packaging an IR LED emitter, an “ultra-fast” light detector, and the circuitry needed to calculate the distance from the measurements. It also contains a wide-dynamic-range ambient light sensor. 

Is all of that needed just to keep your phone from getting too cheeky? Well, it’s clear that that’s simply the “marquee” function they address. On the assumption that you can do a lot more interesting stuff if you can measure with reasonable accuracy how far away something is (as opposed to a more binary near/far assessment), they’re betting that phone makers will want to include it so that both they and enterprising apps writers will come up with all kinds of interesting new things to do. It changes the class of apps it can manage from digital to analog (in the sense I defined them when discussing accelerometer applications).

Used in such other applications, they’re targeting a distance range of up to 100 mm (about 4 inches for those of us that grew up with non-metric intuitive visualization). They think it will work beyond that, but they’re not committing to that at this time.

You can find more info in their release.

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

Cutting the AI Power Cord: Technology to Enable True Edge Inference

Sponsored by Mouser Electronics and Maxim Integrated

Artificial intelligence and machine learning are exciting buzzwords in the world of electronic engineering today. But in order for artificial intelligence or machine learning to get into mainstream edge devices, we need to enable true edge inference. In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis from Maxim Integrated about the MAX78000 family of microcontrollers and how this new microcontroller family can help solve our AI inference challenges with low power, low latency, and a built-in neural network accelerator. 

Click here for more information about Maxim Integrated MAX78000 Ultra-Low-Power Arm Cortex-M4 Processor