editor's blog
Subscribe Now

Gravity Leaking

I recently had a wide-ranging discussion with Kevin Shaw, CTO of Sensor Platforms. It originated out of this nagging thing I had going on in my head about what can be done exclusively with accelerometers. Early thoughts on the topic stimulated my whimsical figure skating article, but my curiosity hadn’t been satisfied.

The gist of my thinking was that, while, in general, you need an accelerometer and a gyroscope to establish both direction and orientation, if you were in a fixed frame like an automobile, then your direction established your heading, so knowing your direction meant knowing your heading. And you can get direction from an accelerometer. You could even get altitude change by detecting vertical acceleration.

Turns out it’s not quite that simple. Let’s say you’re out in a flat surface (like Nebraska) with an accelerometer that’s perfectly flat – that is to say, coplanar with your flat surface. If it’s a 2-axis accelerometer, then it won’t notice gravity, which would be orthogonal to the two sensed axes. If (as is more likely) you had a 3-axis sensor, then the Z element would detect gravity, and you would subtract that out.

So in both cases, you would calibrate to zero vertical acceleration. And as you drove around on the flatlands, you could figure out where you were. But at some point, you’re going to encounter a hill. Or heck, even an overpass. Now you’ll move vertically. And that’s where it gets tricky.

If you had your sensor mounted in a flexible way that guaranteed it would always remain flat (that is, with gravity being perfectly down), no matter where the car goes, then things would still work. But most of us don’t have that: as we go up a hill, our car tilts, as does any sensor in the car. Gravity is no longer in the Z direction. And we’re only subtracting out gravity in the Z direction. So now gravity is going to show up in some other direction. Not full gravity, perhaps, but a component of it.

The sensor can’t tell whether that appearance of gravity represents gravity in a tilted sensor or acceleration in a flat sensor. And gravity is a large acceleration compared to what our cars can do, so just the mere tilting of the car will suddenly result in a large “leakage” of gravity into the other directions, misleading the accelerometer. That leakage will also reduce what the accelerometer sees in the Z direction, making it think you’re levitating.

This is all the stuff of thought experiments, since we do have and use gyroscopes to eliminate the ambiguity. But I found it an interesting insight into how some of these calculations work as well as a minute aspect of what the sensor fusion guys have to deal with.

Leave a Reply

featured blogs
Apr 23, 2025
Just when I thought the day was as strange as it could get, I ran across this video'¦...

featured paper

How Google and Intel use Calibre DesignEnhancer to reduce IR drop and improve reliability

Sponsored by Siemens Digital Industries Software

Through real-world examples from Intel and Google, we highlight how Calibre’s DesignEnhancer maximizes layout modifications while ensuring DRC compliance.

Click here for more information

featured chalk talk

Developing a Secured Matter Device with the OPTIGA™ Trust M MTR Shield
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Amelia Dalton and Johannes Koblbauer from Infineon explore how you can add Matter and security to your next smart home project with the OPTIGA™ Trust M MTR shield. They also investigate the steps involved in the OPTIGA™ Trust M Matter design process, the details of the OPTIGA™ Trust M Matter evaluation board and how you can get started on your next Matter IoT device.
Jul 2, 2024
32,128 views