editor's blog
Subscribe Now

Gravity Leaking

I recently had a wide-ranging discussion with Kevin Shaw, CTO of Sensor Platforms. It originated out of this nagging thing I had going on in my head about what can be done exclusively with accelerometers. Early thoughts on the topic stimulated my whimsical figure skating article, but my curiosity hadn’t been satisfied.

The gist of my thinking was that, while, in general, you need an accelerometer and a gyroscope to establish both direction and orientation, if you were in a fixed frame like an automobile, then your direction established your heading, so knowing your direction meant knowing your heading. And you can get direction from an accelerometer. You could even get altitude change by detecting vertical acceleration.

Turns out it’s not quite that simple. Let’s say you’re out in a flat surface (like Nebraska) with an accelerometer that’s perfectly flat – that is to say, coplanar with your flat surface. If it’s a 2-axis accelerometer, then it won’t notice gravity, which would be orthogonal to the two sensed axes. If (as is more likely) you had a 3-axis sensor, then the Z element would detect gravity, and you would subtract that out.

So in both cases, you would calibrate to zero vertical acceleration. And as you drove around on the flatlands, you could figure out where you were. But at some point, you’re going to encounter a hill. Or heck, even an overpass. Now you’ll move vertically. And that’s where it gets tricky.

If you had your sensor mounted in a flexible way that guaranteed it would always remain flat (that is, with gravity being perfectly down), no matter where the car goes, then things would still work. But most of us don’t have that: as we go up a hill, our car tilts, as does any sensor in the car. Gravity is no longer in the Z direction. And we’re only subtracting out gravity in the Z direction. So now gravity is going to show up in some other direction. Not full gravity, perhaps, but a component of it.

The sensor can’t tell whether that appearance of gravity represents gravity in a tilted sensor or acceleration in a flat sensor. And gravity is a large acceleration compared to what our cars can do, so just the mere tilting of the car will suddenly result in a large “leakage” of gravity into the other directions, misleading the accelerometer. That leakage will also reduce what the accelerometer sees in the Z direction, making it think you’re levitating.

This is all the stuff of thought experiments, since we do have and use gyroscopes to eliminate the ambiguity. But I found it an interesting insight into how some of these calculations work as well as a minute aspect of what the sensor fusion guys have to deal with.

Leave a Reply

featured blogs
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

ROHM's 4th Generation SiC MOSFET
In this episode of Chalk Talk, Amelia Dalton and Ming Su from ROHM Semiconductor explore the benefits of the ROHM’s 4th generation of silicon carbide MOSFET. They investigate the switching performance, capacitance improvement, and ease of use of this new silicon carbide MOSFET family.
Jun 26, 2023
33,724 views