editor's blog
Subscribe Now

Dry Etch Edges Wet

Two announcements have come out recently regarding dry etch systems. Now… dry etch is nothing new. Although it is newer than wet etch, which is still being used. And, as they say, therein lies the rub.

The first announcement came late January regarding a new system shipping from Memsstar. Their focus was on MEMS, and, in particular, on reducing yield failures due to stiction. There are two pieces to this move.

First, they note that wet etch processes must be followed by a wash to clean out all of the etchant and resulting groddy bits. This involves water, and it’s very easy for bits of water to get “caught” in small spaces due to capillary action. It’s generally not a good idea to have residues like that any place in the circuit, but if it happens to be touching a moving MEMS element, then it may cause the element to bind (or, at the very least, not move with the same force/acceleration relationships as were designed for). This is a form of stiction.

Dry etch processes do not involve a wash, and so simply moving away from wet etch might seem sufficient. But in particular with an HF dry etch, one of the products of the reaction is water. It’s normally in gaseous form, where it won’t cause stiction issues. But, according to Memsstar, if the reaction isn’t properly controlled, you can get excess water, some of which may then liquefy, in which case you’re back to dealing with stiction.

So part two of this move is their claim of having the only system with the process monitoring that can ensure this doesn’t happen. So you go from a two-step wet etch process (etch, wash) with stiction to a one-step dry etch process without stiction.

The other announcement was more recent; it was from Nanoplas. They actually got their start with a MEMS-oriented “high-density radical flux” (HDRF) etcher that, due to a source that provided a concentration of species 1000 times higher than a typical source, they could be much more efficient when cleaning out residues from irregular MEMS configurations, especially cavities and high-aspect-ratio features.

But their latest announcement is for what they call “atomic layer downstream etching,” or ALDE. And they can’t really say a lot about the details now due to patent filing issues. But their current focus for it is CMOS and the problems being encountered at 28, 20, and 14-nm nodes using traditional phosphoric acid wet etching.

Etching normally involves a measure of selectivity. You want to etch things you’re trying to remove without touching anything else. Unfortunately, nothing is perfect, so you always get some impact on the stuff you’re trying to keep; a measure of the selectivity is the ratio of how much you etch what you’re trying to remove vs. how much you etch what you’re trying to keep. Rates these days can be 10:1 or even 50:1.

But, according to Nanoplas, from a process control standpoint, etch rate and selectivity have been tightly bound together. You can be more selective if you etch slower, so it’s hard to optimize for quality and throughput. Their claim is again about control: they say that, with their new source, they can independently control selectivity and etch rate.

Typically, there’s one thing you’re trying to etch, and everything else is what shouldn’t be etched. Which means there may be more than one material that needs preserving. But even if it’s just one (and Nanoplas says that it’s typically one or two), it could be oxide or silicon or resist or nitride or poly or metal or… you get the picture.

But they say that the control they provide allows the etch to be optimized for any of them. Right now, they’re focusing on SiN etch for a specific client that’s dissatisfied with the performance of traditional wet-etch approaches for spacer technology. But, going forward, they’ll be able to optimize for any other etches as well. Oxide and poly will be their next areas of work.

They won’t actually be selling a complete system, but rather a process module that OEMs can integrate into their platforms.

At such time as I can get more info on how the Nanoplas system works, I’ll follow up with those details.

 

You can find out more about the Memsstar system in their release; likewise, there’s some more detail on the Nanoplas announcement in their release.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Secure Authentication ICs for Disposable and Accessory Ecosystems
Sponsored by Mouser Electronics and Microchip
Secure authentication for disposable and accessory ecosystems is a critical element for many embedded systems today. In this episode of Chalk Talk, Amelia Dalton and Xavier Bignalet from Microchip discuss the benefits of Microchip’s Trust Platform design suite and how it can provide the security you need for your next embedded design. They investigate the value of symmetric authentication and asymmetric authentication and the roles that parasitic power and package size play in these kinds of designs.
Jul 21, 2023
32,105 views