editor's blog
Subscribe Now

20 to 14: Less Bad Than You Thought?

Conventional wisdom should suggest the following points:

  • Each new process node affects all layers
  • Moving to FinFETs will be a big change for designers

Turns out, according to EDA folks (Mentor and Cadence, to be specific), neither of those is true.

The backend of 16/14 (hereinafter referred to as 14 because I’m lazy) – the upper metal layers and such – will be the same as 20 nm. In fact, in this view, the easiest way to describe the 14-nm node is as a 20-nm process with FinFETs instead of planar transistors. At least as implemented by the folks doing FinFETs (which is all the obvious big foundry guys).

If the second bullet point is true, then this means a lot of work for designers when moving from 20 to 14. But the move to FinFET should be moderately transparent – for digital designers. That’s because the transistor itself is abstracted under many layers of design tool. Obviously the EDA tools themselves needed a ton of work – parasitic extraction in particular has become much more complex due to the complicated shapes, resulting in a gnarly model.

But the digital designer is largely protected from all that (at the expense of the cell builders). In fact, the 28à20-nm transition may have been the hard one, since that’s where double-patterning and local interconnect were introduced. Those have had more impact on designers (and, of course, on the tools).

As usual, things aren’t quite as simple for the analog guys. But the biggest change they face in how they work is the quantization that FinFETs introduce: gate “width” amounts to a number of FinFETs, and you can’t have a fractional FinFET. (OK, maybe you can end up with some, but they would be considered a yield problem.)

Leave a Reply

featured blogs
Aug 11, 2020
While Cadence System in Package (SiP) is '€“ and continues to be '€“ one of the most complete solutions for package design, the Virtuoso RF Solution gives access to a constantly increasing set of package... [[ Click on the title to access the full blog on the Cadence Com...
Aug 11, 2020
Making a person appear to say or do something they did not actually say or do has the potential to take the war of disinformation to a whole new level....
Aug 7, 2020
HPC. FinTech. Machine Learning. Network Acceleration. These and many other emerging applications are stressing data center networks. Data center architectures evolve to ensure optimal resource utilization and allocation. PECFF (PCIe® Enclosure Compatible Form Factor) was dev...
Aug 7, 2020
[From the last episode: We looked at activation and what they'€™re for.] We'€™ve talked about the structure of machine-learning (ML) models and much of the hardware and math needed to do ML work. But there are some practical considerations that mean we may not directly us...

Featured Video

Product Update: New DesignWare USB4 IP Solution

Sponsored by Synopsys

Are you ready for USB4? Join Gervais Fong and Eric Huang to learn more about this new 40Gbps standard and Synopsys DesignWare IP that helps bring your USB4-enabled SoC to market faster.

Click here for more information about DesignWare USB4 IP

Featured Paper

Computational Software: 4 Ways It is Transforming System Design & Hardware Design

Sponsored by BestTech Views

Cadence President Anirudh Devgan shares his detailed insights on Computational Software. Anirudh provides a clear definition of computational software, and four specific ways computational software is transforming system design & hardware design -- including highly distributed compute, reduced memory footprints, co-optimization, and machine learning applications.

Click here for the white paper.

Featured Chalk Talk

Accelerate HD Ultra-Dense Multi-Row Mezzanine Strips

Sponsored by Mouser Electronics and Samtec

Embedded applications are putting huge new demands on small connectors. Size, weight, and power constraints are combining with new signal integrity challenges due to high-speed interfaces and high-density connections, putting a crunch on connectors for embedded design. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns of Samtec about the new generation of high-performance connectors for embedded design.

More information about Samtec AcceleRate® HD Ultra-Dense Mezzanine Strips: