editor's blog
Subscribe Now

20 to 14: Less Bad Than You Thought?

Conventional wisdom should suggest the following points:

  • Each new process node affects all layers
  • Moving to FinFETs will be a big change for designers

Turns out, according to EDA folks (Mentor and Cadence, to be specific), neither of those is true.

The backend of 16/14 (hereinafter referred to as 14 because I’m lazy) – the upper metal layers and such – will be the same as 20 nm. In fact, in this view, the easiest way to describe the 14-nm node is as a 20-nm process with FinFETs instead of planar transistors. At least as implemented by the folks doing FinFETs (which is all the obvious big foundry guys).

If the second bullet point is true, then this means a lot of work for designers when moving from 20 to 14. But the move to FinFET should be moderately transparent – for digital designers. That’s because the transistor itself is abstracted under many layers of design tool. Obviously the EDA tools themselves needed a ton of work – parasitic extraction in particular has become much more complex due to the complicated shapes, resulting in a gnarly model.

But the digital designer is largely protected from all that (at the expense of the cell builders). In fact, the 28à20-nm transition may have been the hard one, since that’s where double-patterning and local interconnect were introduced. Those have had more impact on designers (and, of course, on the tools).

As usual, things aren’t quite as simple for the analog guys. But the biggest change they face in how they work is the quantization that FinFETs introduce: gate “width” amounts to a number of FinFETs, and you can’t have a fractional FinFET. (OK, maybe you can end up with some, but they would be considered a yield problem.)

Leave a Reply

featured blogs
Apr 14, 2021
Hybrid Cloud architecture enables innovation in AI chip design; learn how our partnership with IBM combines the best in EDA & HPC to improve AI performance. The post Synopsys and IBM Research: Driving Real Progress in Large-Scale AI Silicon and Implementing a Hybrid Clou...
Apr 13, 2021
The human brain is very good at understanding the world around us.  An everyday example can be found when driving a car.  An experienced driver will be able to judge how large their car is, and how close they can approach an obstacle.  The driver does not need ...
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

Benefits and Applications of Immersion Cooling

Sponsored by Samtec

For truly high-performance systems, liquid immersion cooling is often the best solution. But, jumping into immersion cooling requires careful consideration of elements such as connectors. In this episode of Chalk Talk, Amelia Dalton chats with Brian Niehoff of Samtec about connector solutions for immersion-cooled applications.

Click here for more information about Samtec immersion cooling solutions