editor's blog
Subscribe Now

Teasing Apart FBAR Loading and Temperature Effects

We hear stories of a not-so-distant future when we can wave our tricorder-like devices around and detect all kinds of substances that might be in the air. One of the ways sensors like this can work is by having a resonating body: when a substance adsorbs on the surface, it changes the mass, thereby changing the resonance frequency.

The problem is, however, that temperature also affects the frequency, and it’s actually pretty hard to calibrate that out of the system. Using a reference resonator or a complex software algorithm is possible, but, according to a team from Cambridge, Universities of Sheffield, Bolton, and Manchester in the UK, and Kyung Hee University in Korea, it makes things more complex and/or costly.

They’ve come up with a way of teasing the loading and temperature effects apart. It involves a two-layer structure: 2 µm of ZnO over 2 µm of SiO2. When they get this vibrating, they see two modes:

  • One with a fundamental frequency at 754 MHz and harmonics at 2.26 and 3.77 GHz
  • One with a fundamental frequency at 1.44 GHz, and the next harmonic at 4.34 GHz

The first mode comes from the resonance of the combined ZnO/SiO2 structure; its half-wavelength relates to the combined 4-µm thickness of the overall structure. The second mode results from the ZnO layer by itself, with a half-wavelength driven by the 2-µm thickness of this layer, although it’s also affected by the SiO2 load.

Both ZnO and SiO2 have positive coefficients of thermal expansion (CTE), so both layers get thicker as temperature goes up. But the longitudinal wave velocity goes up for SiO2 and down for ZnO. As a result, the frequencies move in opposite directions as temperature changes: roughly 79.5 ppm/K for SiO2 and -7 ppm/K for ZnO.

Given those as base numbers, it now becomes possible to deconvolve the temperature and loading effects of whatever it is you’re trying to sense.

This was, of course, a university project, although it looks like they will be open to commercializing it. You can get more details in the full paper, but it’s behind a paywall (actually, several; you can Google “Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading” and pick your favorite one).

Leave a Reply

featured blogs
May 26, 2022
Introducing Synopsys Learning Center, an online, on-demand library of self-paced training modules, webinars, and labs designed for both new & experienced users. The post New Synopsys Learning Center Makes Training Easier and More Accessible appeared first on From Silico...
May 26, 2022
CadenceLIVE Silicon Valley is back as an in-person event for 2022, in the Santa Clara Convention Center as usual. The event will take place on Wednesday, June 8 and Thursday, June 9. Vaccination You... ...
May 25, 2022
There are so many cool STEM (science, technology, engineering, and math) toys available these days, and I want them all!...
May 24, 2022
By Neel Natekar Radio frequency (RF) circuitry is an essential component of many of the critical applications we now rely… ...

featured video

EdgeQ Creates Big Connections with a Small Chip

Sponsored by Cadence Design Systems

Find out how EdgeQ delivered the world’s first 5G base station on a chip using Cadence’s logic simulation, digital implementation, timing and power signoff, synthesis, and physical verification signoff tools.

Click here for more information

featured paper

Introducing new dynamic features for exterior automotive lights with DLP® technology

Sponsored by Texas Instruments

Exterior lighting, primarily used to illuminate ground areas near the vehicle door, can now be transformed into a projection system used for both vehicle communication and unique styling features. A small lighting module that utilizes automotive-grade digital micromirror devices, such as the DLP2021-Q1 or DLP3021-Q1, can display an endless number of patterns in any color imaginable as well as communicate warnings and alerts to drivers and other vehicles.

Click to read more

featured chalk talk

Introducing Vivado ML Editions

Sponsored by Xilinx

There are many ways that machine learning can help improve our IC designs, but when it comes to quality of results and design iteration - it’s a game changer. In this episode of Chalk Talk, Amelia Dalton chats with Nick Ni from Xilinx about the benefits of machine learning design optimization, what hierarchical module-based compilation brings to the table, and why extending a module design into an end-to-end flow can make all the difference in your next IC design.

Click here for more information about Vivado ML