editor's blog
Subscribe Now

Teasing Apart FBAR Loading and Temperature Effects

We hear stories of a not-so-distant future when we can wave our tricorder-like devices around and detect all kinds of substances that might be in the air. One of the ways sensors like this can work is by having a resonating body: when a substance adsorbs on the surface, it changes the mass, thereby changing the resonance frequency.

The problem is, however, that temperature also affects the frequency, and it’s actually pretty hard to calibrate that out of the system. Using a reference resonator or a complex software algorithm is possible, but, according to a team from Cambridge, Universities of Sheffield, Bolton, and Manchester in the UK, and Kyung Hee University in Korea, it makes things more complex and/or costly.

They’ve come up with a way of teasing the loading and temperature effects apart. It involves a two-layer structure: 2 µm of ZnO over 2 µm of SiO2. When they get this vibrating, they see two modes:

  • One with a fundamental frequency at 754 MHz and harmonics at 2.26 and 3.77 GHz
  • One with a fundamental frequency at 1.44 GHz, and the next harmonic at 4.34 GHz

The first mode comes from the resonance of the combined ZnO/SiO2 structure; its half-wavelength relates to the combined 4-µm thickness of the overall structure. The second mode results from the ZnO layer by itself, with a half-wavelength driven by the 2-µm thickness of this layer, although it’s also affected by the SiO2 load.

Both ZnO and SiO2 have positive coefficients of thermal expansion (CTE), so both layers get thicker as temperature goes up. But the longitudinal wave velocity goes up for SiO2 and down for ZnO. As a result, the frequencies move in opposite directions as temperature changes: roughly 79.5 ppm/K for SiO2 and -7 ppm/K for ZnO.

Given those as base numbers, it now becomes possible to deconvolve the temperature and loading effects of whatever it is you’re trying to sense.

This was, of course, a university project, although it looks like they will be open to commercializing it. You can get more details in the full paper, but it’s behind a paywall (actually, several; you can Google “Dual-mode thin film bulk acoustic wave resonators for parallel sensing of temperature and mass loading” and pick your favorite one).

Leave a Reply

featured blogs
May 25, 2023
Register only once to get access to all Cadence on-demand webinars. Unstructured meshing can be automated for much of the mesh generation process, saving significant engineering time and cost. However, controlling numerical errors resulting from the discrete mesh requires ada...
May 24, 2023
Accelerate vision transformer models and convolutional neural networks for AI vision systems with the ARC NPX6 NPU IP, the best processor for edge AI devices. The post Designing Smarter Edge AI Devices with the Award-Winning Synopsys ARC NPX6 NPU IP appeared first on New Hor...
May 8, 2023
If you are planning on traveling to Turkey in the not-so-distant future, then I have a favor to ask....

featured video

Automatically Generate, Budget and Optimize UPF with Synopsys Verdi UPF Architect

Sponsored by Synopsys

Learn to translate a high-level power intent from CSV to a consumable UPF across a typical ASIC design flow using Verdi UPF Architect. Power Architect can focus on the efficiency of the Power Intent instead of worrying about Syntax & UPF Semantics.

Learn more about Synopsys’ Energy-Efficient SoCs Solutions

featured contest

Join the AI Generated Open-Source Silicon Design Challenge

Sponsored by Efabless

Get your AI-generated design manufactured ($9,750 value)! Enter the E-fabless open-source silicon design challenge. Use generative AI to create Verilog from natural language prompts, then implement your design using the Efabless chipIgnite platform - including an SoC template (Caravel) providing rapid chip-level integration, and an open-source RTL-to-GDS digital design flow (OpenLane). The winner gets their design manufactured by eFabless. Hurry, though - deadline is June 2!

Click here to enter!

featured chalk talk

Industry 4.0: From Conception to Value Generation
Industry 4.0 has brought a lot of exciting innovation to the manufacturing and industrial factories throughout the world, but getting your next IIoT design from concept to reality can be a challenging process. In this episode of Chalk Talk, Adithya Madanahalli from Würth Elektronik and Amelia Dalton explore how Würth Elektronik can help you jump start your next IIoT design.
Apr 17, 2023