editor's blog
Subscribe Now

Altera Partners with Intel for 14nm Tri-Gate FPGAs

Altera just announced that they’re partnering with Intel to produce FPGAs based on Intel’s 14nm Tri-Gate process.  This has the potential to give Altera a big lead in the node-after-next war with rival Xilinx.  Intel has a well-established leadership position in FinFET technology (which they call Tri-Gate) – a 3D transistor fabrication technique that has much lower power consumption and better performance than traditional planar CMOS transistors.  FinFETs give probably an extra process node worth of benefits to FPGAs, so a 14nm FinFET-based FPGA will probably be 2 process nodes better (in terms of performance and power consumption) than the 20nm planar devices that both Xilinx and Altera are already reportedly developing, and 3 process nodes better than the current state-of-the-art 28nm FPGAs both companies are producing with TSMC.

We talked with Altera CEO John Daane about the deal, and Daane says Altera will be exclusive with Intel among “Major FPGA vendors.” That means Xilinx will not be working with Intel 14nm Tri-Gate, but likely Achronix and/or Tabula will.  This leaves Xilinx without a known partner for Fin-FET FPGAs, although they are rumored to be working with TSMC on the technology.  However, Intel is believed to have a significant lead both in 3D transistors and in process geometry at this point, so this deal could be a major coup for Altera.

Leave a Reply

featured blogs
Jan 15, 2021
I recently saw (what appears at first glance to be) a simple puzzle involving triangles. But is finding the solution going to be trickier than I think?...
Jan 15, 2021
It's Martin Luther King Day on Monday. Cadence is off. Breakfast Bytes will not appear. And, as is traditional, I go completely off-topic the day before a break. In the past, a lot of novelty in... [[ Click on the title to access the full blog on the Cadence Community s...
Jan 14, 2021
Learn how electronic design automation (EDA) tools & silicon-proven IP enable today's most influential smart tech, including ADAS, 5G, IoT, and Cloud services. The post 5 Key Innovations that Are Making Everything Smarter appeared first on From Silicon To Software....
Jan 13, 2021
Testing is the final step of any manufacturing process, and arguably the most important, and yet it can often be overlooked.  Releasing a poorly tested product onto the market has destroyed more than one reputation for quality, and this is even more important in an age when ...

featured paper

Common Design Pitfalls When Designing With Hall 2D Sensors And How To Avoid Them

Sponsored by Texas Instruments

This article discusses three widespread application issues in industrial and automotive end equipment – rotary encoding, in-plane magnetic sensing, and safety-critical – that can be solved more efficiently using devices with new features and higher performance. We will discuss in which end products these applications can be found and also provide a comparison with our traditional digital Hall-effect sensors showing how the new releases complement our existing portfolio.

Click here to download the whitepaper

featured chalk talk

Automotive Infotainment

Sponsored by Mouser Electronics and KEMET

In today’s fast-moving automotive electronics design environment, passive components are often one of the last things engineers consider. But, choosing the right passives is now more important than ever, and there is an exciting and sometimes bewildering range of options to choose from. In this episode of Chalk Talk, Amelia Dalton chats with Peter Blais from KEMET about choosing the right passives and the right power distribution for your next automotive design.

Click here for more information about KEMET Electronics Low Voltage DC Auto Infotainment Solutions