editor's blog
Subscribe Now

MEMS Caps that Push Both Ways

The many bands that cellphones must support, coupled with environmental changes that can have a dramatic effect on the effectiveness of a phone’s antenna, have made the concept of antenna “tuning” particularly relevant. We looked at WiSpry’s approach to this some time ago. The concept involves an array of capacitors that can be reconfigured in real time to change the characteristics of the antenna and improve reception.

Most such MEMS capacitor arrays consist of cantilevers – like diving boards – or bridges – basically, cantilevers supported on both ends. (Which… makes them not cantilevers… yes, I understand…) But there’s a new company, just on the heels of a funding round, that has proposed a different way to build the capacitor.

DelfMEMS (I was so expecting them to be associated with Delft, the Netherlands, but no… they’re French) points to stiction as a particular problem for these traditional structures. Stiction is the tendency of a variety of influences – atomic forces, residual gunks, etc. – to cause a micro- or nanoscale structure to stick when you don’t want it to. So, for instance, if you push a cantilever down until it touches a base surface, it may stick when you remove the force you used to push it down.

Some companies actually use this as a way of holding down the cantilever, but in general, the issue comes when trying to release it. Assuming you’re not intentionally using stiction as your hold-down mechanism, DelfMEMS says that the traditional approach to avoiding stiction issues when opening the contact is to rely on mechanical force sufficient to overcome the stiction. And this mechanical force is typically provided by using a really stiff beam structure, located relatively far from the contact surface. That way it’s pulling away hard.

The downside of that is that you need a very high voltage – on the order of 50-100 V – to bend the thing when you want to actuate it.

DelfMEMS has a different structure. Viewed from the side, you can think of it like a bridge, except that, instead of being anchored at the end of the beam, there are two pillars placed in from the ends, and the bridge rests on them. This means that the beam can flex both so that the middle bows down, with the ends raising up, and so that the middle bows up, with the ends flexing down. The key is that they put actuating electrodes both in the middle, to pull the middle down and make contact, and under the ends, to pull the ends down, which raises the middle and breaks the contact. In other words, you get electrical help in both directions. And that reduces the voltages needed to less than 20 V.

This appears to be the essence of what they bring to the table, although they talk about other details in a whitepaper on their website. You can find out more about them and their recent funding round in their release.

Leave a Reply

featured blogs
Oct 4, 2022
We share 6 key advantages of cloud-based IC hardware design tools, including enhanced scalability, security, and access to AI-enabled EDA tools. The post 6 Reasons to Leverage IC Hardware Development in the Cloud appeared first on From Silicon To Software....
Oct 4, 2022
Anyone designing a data center faces complex thermal management challenges . Yes, there's a large amount of electrical power required, but the other side of that coin is that almost all the power gets turned into heat, putting a tremendous strain on the airflow and cooling sy...
Sep 30, 2022
When I wrote my book 'Bebop to the Boolean Boogie,' it was certainly not my intention to lead 6-year-old boys astray....

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Double Density Cool Edge Next Generation Card Edge Interconnect

Sponsored by Mouser Electronics and Amphenol ICC

Nowhere is the need for the reduction of board space more important than in the realm of high-performance servers. One way we can reduce complexity and reduce overall board space in our server designs can be found in the connector solutions we choose. In this episode of Chalk Talk, Amelia Dalton chats with David Einhorn from Amphenol about how Amphenol double-density cool edge interconnects can not only reduce space but also lessen complexity and give us greater flexibility.

Click here for more information about Amphenol FCI Double Density Cool Edge 0.80mm Connectors