editor's blog
Subscribe Now

Multicore Best Practices

The hardest thing that multicore has had going for it is the perception that it’s hard. OK, that plus the fact that it is, in fact, hard. Or it can be. Although familiarity and tools are improving that. Nevertheless, it’s been a slow slog as multicore has gradually made its way into the embedded consciousness.

Part of the problem is that there is no one right answer for multicore anything. No one right architecture, no one right core, no one right set of tools, no one right way to write software. It all depends on what you’re trying to do. So it’s impossible simply to say, “Here’s how you do it, now off you go.”

The alternative, as envisioned by the Multicore Association, has been to compile a set of best practices, assembled by early adopters, for the benefit of relative newbies. And, frankly, the not-so-newbies – there’s always something more to learn. (And perhaps even debate.) That compilation has just been announced: a snapshot of multicore dos and don’ts summarized in a mere 100-odd pages.

After some basic overviews, it deals with high-level design, then low-level design, followed by debug and performance tuning. As you might suspect, covering so many topics in such a succinct fashion would make this less of a multicore primer and more of a hand-up once you’ve got your arms around multicore basics. In fact, it’s probably one of those things that’s best to take on after you’ve screwed up a project or two (hopefully as learning exercises, not as business disasters). OK, “screwed up” is possibly too strong; let’s say that some months of struggle with various non-obvious multicore issues will make this a rather more accessible document. And probably one that bears re-reading from time to time, since you’ll probably pick up more each time.

You can find your way to more information and the document itself via their announcement.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

ROHM Automotive Intelligent Power Device (IPD)
Modern automotive applications require a variety of circuit protections and functions to safeguard against short circuit conditions. In this episode of Chalk Talk, Amelia Dalton and Nick Ikuta from ROHM Semiconductor investigate the details of ROHM’s Automotive Intelligent Power Device, the role that ??adjustable OCP circuit and adjustable OCP mask time plays in this solution, and the benefits that ROHM’s Automotive Intelligent Power Device can bring to your next design.
Feb 1, 2024
11,408 views