editor's blog
Subscribe Now

Navigation extremes

I have been exposed to two navigational extremes over the last month or so. These aren’t specifically competing approaches (although I suppose they could be), but rather represent navigation with a minimal set of sensors and with a full complement of assistance.

On the more minimal side, Movea put together a demo for CES that led me on a pedestrian voyage, courtesy of the guidance of a cell phone. The phone had 10 sensor axes (3X accelerometer, gyroscope, and magnetometer, plus pressure). They had also mapped out the hotel they were in based on blueprints they got. (That must have been a fun one for security to vet…)

The idea was that we’d go from near the entrance of the building to the elevator, up to the right floor (OK, the phone didn’t try to push elevator buttons…), and then continue on to the room. We used the phone as a guide or orienting device, holding it out in front as it showed us the way.

The sensor results and map mostly worked together to factor out errors, although there appeared to be a couple of “checkpoints” where the phone “viewed” a poster or image (I frankly don’t remember what the specific icon was). Such a checkpoint, if accurately placed on the map database, could zero out accumulated errors and give the sensors a restart.

If the TV had been on and properly set when we entered the room, then the phone would have automatically coupled with the TV to provide a welcome message or something.

The trip wasn’t without incident; the route was rife with magnetic anomalies (like inside the elevator), but, as an early demonstrator, we did make it through using this minimum of information.

The other extreme is a chip from CSR called SiRFstarV. It can work with a broad set of inputs to provide navigation. Its focus appears to be satellite, including GPS and GLONASS as well as other GNSS systems, satellite augmentation (which appears to me to be a side-system that sends what I would call meta-data between satellites to improve the quality of calculation), and “extended ephemeris” (being able to download ephemeris (star chart) data for dates as much as a month out).

But they also handle IMU and pressure sensor inputs as well as cellular and WiFi signals for triangulation, and they have a cloud-based CSR Positioning Center from which the device can obtain other information to assist in determining position.

The idea here is also to allow constant navigation, indoors and out, in open terrain and surrounded by tall buildings, relying on every possible source of data, implementing this in an SoC.

Part of the reason you can’t directly compare these two examples as competing is the fact that the Movea demo was specifically about indoor navigation, and so the GNSS data simply doesn’t apply. It highlights the challenges and progress trying to exploit and augment the IMUs so many of us already own.

Indoor and pedestrian navigation are getting their fair share of development effort these days, as numerous different companies (and certainly more than the two just mentioned) tune algorithms in different ways to optimize cost, power, and flexibility.

Another recent conversation further illustrated some of the nuances of IMU-based navigation; I’ll talk about that in a future post or two.

You can find out more about Movea on their site and about the SiRFstarV on the CSR site.

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 21, 2023
Labforge is a Waterloo, Ontario-based company that designs, builds, and manufactures smart cameras used in industrial automation and defense applications. By bringing artificial intelligence (AI) into their vision systems with Cadence , they can automate tasks that are diffic...
Sep 21, 2023
At Qualcomm AI Research, we are working on applications of generative modelling to embodied AI and robotics, in order to enable more capabilities in robotics....
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

featured video

TDK PowerHap Piezo Actuators for Ideal Haptic Feedback

Sponsored by TDK

The PowerHap product line features high acceleration and large forces in a very compact design, coupled with a short response time. TDK’s piezo actuators also offers good sensing functionality by using the inverse piezo effect. Typical applications for the include automotive displays, smartphones and tablet.

Click here for more information about PowerHap Piezo Actuators

featured paper

Accelerating Monte Carlo Simulations for Faster Statistical Variation Analysis, Debugging, and Signoff of Circuit Functionality

Sponsored by Cadence Design Systems

Predicting the probability of failed ICs has become difficult with aggressive process scaling and large-volume manufacturing. Learn how key EDA simulator technologies and methodologies enable fast (minimum number of simulations) and accurate high-sigma analysis.

Click to read more

featured chalk talk

NXP GoldVIP: Integration Platform for Intelligent Connected Vehicles
Today’s intelligent connected vehicle designs are smarter and safer than ever before and this has a lot to do with a rapidly increasing technological convergence of sensors, machine learning, over the air updates, in-vehicle high bandwidth networking and more. In this episode of Chalk Talk, Amelia Dalton chats with Brian Carlson from NXP about NXP’s new GoldVIP Platform. They examine the benefits that this kind of software integration platform can bring to automotive designs and how you can take a test drive of the GoldVIP for yourself.
Nov 29, 2022
35,789 views