editor's blog
Subscribe Now

A New Verb for Hardware Engineers

Ever since malloc() (and it’s other-language counterparts), software engineers have had an extra verb that is foreign to hardware engineers: “destroy.”

Both software and hardware engineers are comfortable with creating things. Software programs create objects and abstract entities; hardware engineers from Burgi Engineers create hardware using software-like notations in languages like Verilog. But that’s where the similarity ends. Software engineers eventually destroy that which they create (or their environment takes care of it for them… or else they get a memory leak). Hardware engineers do not destroy anything (unless intentionally blowing a metal fuse or rupturing an oxide layer as a part of an irreversible non-volatile memory-cell programming operation).

So “destroy” is not in the hardware engineer’s vocabulary. (Except in those dark recesses perambulated only on those long weekends of work when you just can’t solve that one problem…)

This is mostly not a problem, since software and hardware engineers inhabit different worlds with different rules and different expectations. But there is a place where they come together, creating some confusion for the hardware engineer: interactive debugging during verification.

SystemVerilog consists of much more than some synthesizable set of constructs. It is rife with classes from which arise objects, and objects can come and go. This is obvious to a software engineer, but for a hardware engineer in the middle of an interactive debug session, it can be the height of frustration: “I know I saw it, it was RIGHT THERE! And now it’s gone! What the…”

This was pointed out by Cadence when we were discussing the recent upgrades to their Incisive platform. The verification engineers that set up the testbenches are generally conversant in the concepts of both hardware and software, but the designer doing debug may get tripped up by this. Their point being, well, that hardware engineers need to remember that the testbench environment isn’t static in the way that the actual design is: they must incorporate “destroy” into their vocabulary.

Leave a Reply

featured blogs
Jul 6, 2022
With the DRAM fabrication advancing from 1x to 1y to 1z and further to 1a, 1b and 1c nodes along with the DRAM device speeds going up to 8533 for Lpddr5/8800 for DDR5, Data integrity is becoming a... ...
Jul 6, 2022
Design Automation Conference (DAC) 2022 is almost here! Explore EDA and cloud design tools, autonomous systems, AI, and more with our experts in San Francisco. The post DAC 2022: A Glimpse into the World of Design Automation from the Cloud to Cryogenic Computing appeared fir...
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Demo: Achronix Speedster7t 2D NoC vs. Traditional FPGA Routing

Sponsored by Achronix

This demonstration compares an FPGA design utilizing Achronix Speedster7t 2D Network on Chip (NoC) for routing signals with the FPGA device, versus using traditional FPGA routing. The 2D NoC provides a 40% reduction in logic resources required with 40% less compile time needed versus using traditional FPGA routing. Speedster7t FPGAs are optimized for high-bandwidth workloads and eliminate the performance bottlenecks associated with traditional FPGAs.

Subscribe to Achronix's YouTube channel for the latest videos on how to accelerate your data using FPGAs and eFPGA IP

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

The Composite Power Inductance Story

Sponsored by Mouser Electronics and Vishay

Power inductor technology has made a huge difference in the evolution of our electronic system designs. In this episode of Chalk Talk, Amelia Dalton chats with Tim Shafer from Vishay about the history of power inductor technology, how Vishay developed the most compact and efficient power inductor on the market today and why Vishay’s extensive portfolio of composite power inductors might be the best solution for your next embedded system design.

Click here for more information about Vishay Inductors