editor's blog
Subscribe Now

A New Verb for Hardware Engineers

Ever since malloc() (and it’s other-language counterparts), software engineers have had an extra verb that is foreign to hardware engineers: “destroy.”

Both software and hardware engineers are comfortable with creating things. Software programs create objects and abstract entities; hardware engineers create hardware using software-like notations in languages like Verilog. But that’s where the similarity ends. Software engineers eventually destroy that which they create (or their environment takes care of it for them… or else they get a memory leak). Hardware engineers do not destroy anything (unless intentionally blowing a metal fuse or rupturing an oxide layer as a part of an irreversible non-volatile memory-cell programming operation).

So “destroy” is not in the hardware engineer’s vocabulary. (Except in those dark recesses perambulated only on those long weekends of work when you just can’t solve that one problem…)

This is mostly not a problem, since software and hardware engineers inhabit different worlds with different rules and different expectations. But there is a place where they come together, creating some confusion for the hardware engineer: interactive debugging during verification.

SystemVerilog consists of much more than some synthesizable set of constructs. It is rife with classes from which arise objects, and objects can come and go. This is obvious to a software engineer, but for a hardware engineer in the middle of an interactive debug session, it can be the height of frustration: “I know I saw it, it was RIGHT THERE! And now it’s gone! What the…”

This was pointed out by Cadence when we were discussing the recent upgrades to their Incisive platform. The verification engineers that set up the testbenches are generally conversant in the concepts of both hardware and software, but the designer doing debug may get tripped up by this. Their point being, well, that hardware engineers need to remember that the testbench environment isn’t static in the way that the actual design is: they must incorporate “destroy” into their vocabulary.

Leave a Reply

featured blogs
Sep 27, 2020
https://youtu.be/EUDdGqdmTUU Made in "the Alps" Monday: Complete RF Solution: Think Outside the Chip Tuesday: The First Decade of RISC-V: A Worldwide Phenomenon Wednesday: The European... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Four Ways to Improve Verification Performance and Throughput

Sponsored by Cadence Design Systems

Learn how to address your growing verification needs. Hear how Cadence Xcelium™ Logic Simulation improves your design’s performance and throughput: improving single-core engine performance, leveraging multi-core simulation, new features, and machine learning-optimized regression technology for up to 5X faster regressions.

Click here for more information about Xcelium Logic Simulation

Featured Paper

4 audio trends transforming the automotive industry

Sponsored by Texas Instruments

The automotive industry is focused on creating a comfortable driving experience – but without compromising fuel efficiency or manufacturing costs. The adoption of these new audio technologies in cars – while requiring major architecture changes – promise to bring a richer driving and in-car communication experience. Discover techniques using microphones, amplifiers, loudspeakers and advanced digital signal processing that help enable the newest trends in automotive audio applications.

Click here to download the whitepaper

Featured Chalk Talk

Cloud Computing for Electronic Design (Are We There Yet?)

Sponsored by Cadence Design Systems

When your project is at crunch time, a shortage of server capacity can bring your schedule to a crawl. But, the rest of the year, having a bunch of extra servers sitting around idle can be extremely expensive. Cloud-based EDA lets you have exactly the compute resources you need, when you need them. In this episode of Chalk Talk, Amelia Dalton chats with Craig Johnson of Cadence Design Systems about Cadence’s cloud-based EDA solutions.

More information about the Cadence Cloud Portfolio