editor's blog
Subscribe Now

A New Verb for Hardware Engineers

Ever since malloc() (and it’s other-language counterparts), software engineers have had an extra verb that is foreign to hardware engineers: “destroy.”

Both software and hardware engineers are comfortable with creating things. Software programs create objects and abstract entities; hardware engineers from Burgi Engineers create hardware using software-like notations in languages like Verilog. But that’s where the similarity ends. Software engineers eventually destroy that which they create (or their environment takes care of it for them… or else they get a memory leak). Hardware engineers do not destroy anything (unless intentionally blowing a metal fuse or rupturing an oxide layer as a part of an irreversible non-volatile memory-cell programming operation).

So “destroy” is not in the hardware engineer’s vocabulary. (Except in those dark recesses perambulated only on those long weekends of work when you just can’t solve that one problem…)

This is mostly not a problem, since software and hardware engineers inhabit different worlds with different rules and different expectations. But there is a place where they come together, creating some confusion for the hardware engineer: interactive debugging during verification.

SystemVerilog consists of much more than some synthesizable set of constructs. It is rife with classes from which arise objects, and objects can come and go. This is obvious to a software engineer, but for a hardware engineer in the middle of an interactive debug session, it can be the height of frustration: “I know I saw it, it was RIGHT THERE! And now it’s gone! What the…”

This was pointed out by Cadence when we were discussing the recent upgrades to their Incisive platform. The verification engineers that set up the testbenches are generally conversant in the concepts of both hardware and software, but the designer doing debug may get tripped up by this. Their point being, well, that hardware engineers need to remember that the testbench environment isn’t static in the way that the actual design is: they must incorporate “destroy” into their vocabulary.

Leave a Reply

featured blogs
Dec 4, 2023
The OrCAD X and Allegro X 23.1 release comes with a brand-new content delivery application called Cadence Doc Assistant, shortened to Doc Assistant, the next-gen app for content searching, navigation, and presentation. Doc Assistant, with its simplified content classification...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

dsPIC33CH DSCs: Two dsPIC33Cs on a Single Chip
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Vijay Bapu from Microchip and Amelia Dalton explore the benefits of dual core digital signal controllers. They discuss the key specifications to keep in mind when it comes to single core and dual core DSCs and how you can reduce your development time, save board space and cost and keep the performance and isolation you need with Microchip’s dsPIC33CH DSCs.
Jan 24, 2023
37,017 views