editor's blog
Subscribe Now

Simultaneous alternative views

Embedded vision systems are providing more opportunities for machines to see the world in the same way that our eyes see them (and our brains interpret them), but variants of these technologies are also enabling systems to see things in ways we can’t.

Imec has just announced a new “hyperspectral” camera system for use in medical and industrial inspection systems or anywhere specific filters are needed to understand specific characteristics of whatever is being viewed. In such situations, simply looking at one bandwidth of light may not be enough; a complement of filters may be needed either to provide a signature or to evaluate multiple characteristics at the same time.

One way this is done now is to take separate images, each with a different filter, time-domain multiplexed. This slows the overall frame rate, divided down by the number of filters. The new approach allows full-frame-rate images with all filters simultaneously.

There are actually two versions of this, which imec calls “shapshot” and “linescan.” We’ll look at snapshot first, as this is particularly new. It’s intended for image targets that are either stationary or moving in a random way (or, more specifically, not moving in a line as if on a conveyor belt). The imaging chip is overlaid with tiles, each of which is a different filter.

The filters are the last masked layers of the chip – this is monolithic integration, not assembly after the fact. The filter consists of two reflecting surfaces with a cavity between; the size of the cavity determines the frequency. This means that the final chip will actually have a non-planar surface because of the different cavity sizes – and therefore different heights – of the filter layer. Because these make up the last layers to be processed, it’s convenient for staging base wafers for final processing with custom filter patterns.

The camera lens then directs, or duplicates, the entire scene to every tile. Perhaps it’s better to think of it as an array of lenses, much like a crude plenoptic lens. This gives every filter the full image at the same time; the tradeoff against time-domain multiplexing filters over the lens instead is that you get the resolution of one tile of the imaging chip, not the entire imaging chip.

A camera optimized for linescan applications doesn’t use the plenoptic approach; instead, the tiles are made very small and, as the image moves under the camera at a known rate, multiple low-resolution images are captured and then stitched back together using computational photography techniques.

The lensing system determines the bandwidth characteristics, since you can design this with filters having wider or narrower bandwidths and with or without gaps between the filters. This allows a range from continuous coverage to discrete lines. A collimating lens will direct light in straight lines onto the filters, providing narrow bandwidth; a lens that yields conical light will give wider bandwidth due to interference from the different filters with this light. The aperture size then acts as a bandwidth knob.

Imec has put together a development kit that allows designers to figure out which filters to use for a given linescan application; they’ll be providing one for snapshot cameras as well. Each filter configuration is likely be very specific to its application, making this something of a low-volume business for now. Because of that, and in order to grow the market, imec will actually be open for commercial production of these systems.

You can find more details in their release.

Leave a Reply

featured blogs
Nov 29, 2023
Cavitation poses a formidable challenge to modern boat design, especially for high-speed sailing vessels participating in events like America's Cup , Vendee Globe , and Route du Rhum . Hydrofoils, in particular, are susceptible to cavitation, which can cause surface dama...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

While there is great interest in 3D-IC technology, it is still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this paper to learn about design challenges, ecosystem requirements, and needed solutions. While various types of multi-die packages have been available for many years, this paper focuses on 3D integration and packaging of multiple stacked dies.

Click to read more

featured chalk talk

Introduction to Bare Metal AVR Programming
Sponsored by Mouser Electronics and Microchip
Bare metal AVR programming is a great way to write code that is compact, efficient, and easy to maintain. In this episode of Chalk Talk, Ross Satchell from Microchip and I dig into the details of bare metal AVR programming. They take a closer look at the steps involved in this kind of programming, how bare metal compares with other embedded programming options and how you can get started using bare metal AVR programming in your next design.
Jan 25, 2023
36,932 views