editor's blog
Subscribe Now

Algorithms or Methodologies?

You see it two to four times a year from each EDA player: “x% Productivity Gains with y Tool!” Cadence recently had such an announcement with their Incisive tool; Synopsys has just had a similar story with FineSim.

As I was talking with the Cadence folks about this, I wondered: How much of this productivity gain comes as a result of engine/algorithm improvements, and how much as a result of methodology changes? The answer is, of course, that it comes from both.

But there’s a difference in when the benefits accrue. Engine improvements are immediately visible when you run the tool. Methodology changes: not so much. And there are actually two aspects to methodology.

The first is that, of course, a new methodology requires training and getting used to. So the first project done using a new methodology will take longer; the next one should be better because everyone is used to the new way of doing things. This is a reasonably well-known effect.

But there may be an extra delayed benefit: some methodology changes require new infrastructure or have a conversion cost. If, for example, you replace some aspect of simulation with a new formal tool, you have to modify your testbench and create the new test procedure from scratch. There may be, for instance, numerous pieces of IP that need to be changed to add assertions. These are largely one-time investments, with incremental work required on follow-on projects.

In this example, it may be that, even with the conversion work, things go faster even on the first project. But productivity will be even better next time, when much of the infrastructure and changes are ready and waiting.

As to the engines, I was talking to the folks at Mentor yesterday, and wondered whether improvements to the tools themselves become asymptotic: does there come a point when you just can’t go any faster? Their answer was, “No,” since there’s always some bottleneck that didn’t used to be an issue until the other bigger bottlenecks got fixed. The stuff that got ignored keeps bubbling up in priority, the upshot being that there’s always something that can be improved to speed up the tools.

Leave a Reply

featured blogs
Jun 18, 2021
It's a short week here at Cadence CFD as we celebrate the Juneteenth holiday today. But CFD doesn't take time off as evidenced by the latest round-up of CFD news. There are several really... [[ Click on the title to access the full blog on the Cadence Community sit...
Jun 17, 2021
Learn how cloud-based SoC design and functional verification systems such as ZeBu Cloud accelerate networking SoC readiness across both hardware & software. The post The Quest for the Most Advanced Networking SoC: Achieving Breakthrough Verification Efficiency with Clou...
Jun 17, 2021
In today’s blog episode, we would like to introduce our newest White Paper: “System and Component qualifications of VPX solutions, Create a novel, low-cost, easy to build, high reliability test platform for VPX modules“. Over the past year, Samtec has worked...
Jun 14, 2021
By John Ferguson, Omar ElSewefy, Nermeen Hossam, Basma Serry We're all fascinated by light. Light… The post Shining a light on silicon photonics verification appeared first on Design with Calibre....

featured video

Reduce Analog and Mixed-Signal Design Risk with a Unified Design and Simulation Solution

Sponsored by Cadence Design Systems

Learn how you can reduce your cost and risk with the Virtuoso and Spectre unified analog and mixed-signal design and simulation solution, offering accuracy, capacity, and high performance.

Click here for more information about Spectre FX Simulator

featured paper

4 common questions when isolating signal and power

Sponsored by Texas Instruments

A high-voltage circuit design requires isolation to protect human operators, enable communication to lower-voltage circuitry and eliminate unwanted noise within the system. Many options are available when designing a power supply for digitally isolated circuits including; flyback, H-bridge LLC, push-pull, and integrated isolated data and power solutions. This article explores common questions when isolating signal and power in a design as well as a brief overview of available power solutions.

Click to read more

featured chalk talk

Build, Deploy and Manage Your FPGA-based IoT Edge Applications

Sponsored by Mouser Electronics and Intel

Designing cloud-connected applications with FPGAs can be a daunting engineering challenge. But, new platforms promise to simplify the process and make cloud-connected IoT design easier than ever. In this episode of Chalk Talk, Amelia Dalton chats with Tak Ikushima of Intel about how a collaboration between Microsoft and Intel is pushing innovation forward with a new FPGA Cloud Connectivity Kit.

Click here for more information about Terasic Technologies FPGA Cloud Connectivity Kit