editor's blog
Subscribe Now

Algorithms or Methodologies?

You see it two to four times a year from each EDA player: “x% Productivity Gains with y Tool!” Cadence recently had such an announcement with their Incisive tool; Synopsys has just had a similar story with FineSim.

As I was talking with the Cadence folks about this, I wondered: How much of this productivity gain comes as a result of engine/algorithm improvements, and how much as a result of methodology changes? The answer is, of course, that it comes from both.

But there’s a difference in when the benefits accrue. Engine improvements are immediately visible when you run the tool. Methodology changes: not so much. And there are actually two aspects to methodology.

The first is that, of course, a new methodology requires training and getting used to. So the first project done using a new methodology will take longer; the next one should be better because everyone is used to the new way of doing things. This is a reasonably well-known effect.

But there may be an extra delayed benefit: some methodology changes require new infrastructure or have a conversion cost. If, for example, you replace some aspect of simulation with a new formal tool, you have to modify your testbench and create the new test procedure from scratch. There may be, for instance, numerous pieces of IP that need to be changed to add assertions. These are largely one-time investments, with incremental work required on follow-on projects.

In this example, it may be that, even with the conversion work, things go faster even on the first project. But productivity will be even better next time, when much of the infrastructure and changes are ready and waiting.

As to the engines, I was talking to the folks at Mentor yesterday, and wondered whether improvements to the tools themselves become asymptotic: does there come a point when you just can’t go any faster? Their answer was, “No,” since there’s always some bottleneck that didn’t used to be an issue until the other bigger bottlenecks got fixed. The stuff that got ignored keeps bubbling up in priority, the upshot being that there’s always something that can be improved to speed up the tools.

Leave a Reply

featured blogs
Nov 30, 2023
No one wants to waste unnecessary time in the model creation phase when using a modeling software. Rather than expect users to spend time trawling for published data and tediously model equipment items one by one from scratch, modeling software tends to include pre-configured...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

Achieving High Power Density with IGBT and SiC Power Modules
Sponsored by Mouser Electronics and Infineon
Recent trends in the inverter market have made high power density, scalability, and ease of assembly more important than ever before. In this episode of Chalk Talk, Amelia Dalton and Abraham Markose from Infineon examine how Easy & Econo power modules from Infineon can help solve common inverter design requirements. They explore the benefits and construction of these modules and how you can take advantage of them in your next design.
May 19, 2023
22,498 views