editor's blog
Subscribe Now

You Put That Where??

Wearable electronics is the coming thing, and fitness-related gear is the most obvious thing to wear. And CES had a huge section dedicated to these semi-health devices. “Semi” because it’s this nice cozy niche where you can do things that affect your health with no required FDA approval.

But the scale of integration is pretty astounding. One example was a company called Valencell that has designed sensors that fit into an earbud. Actually, it’s more than just the sensor – there’s a lot of computing that goes on in that little thing that still has to be comfortable to wear (which was a challenge for them).

First, they have an IR emitter and detector that senses heart rate. Then they have an accelerometer to estimate pace, distance, and step rate. All of this information can be used to estimate oxygen and calories burned.

The sensors interact with your phone, but they don’t rely on the phone to do all the work: there’s also a DSP in the headset that processes the sensor data. What the phone gets is the final result for display to the runner.

Some of the challenges – in addition to the simple issues of size and comfort – included:

  • Resting heart rate is pretty straightforward to detect, but when running, there’s so much noise that it’s hard to reject the extraneous artifacts.
  • Indoor and outdoor light profiles are very different; the system has to handle both. The sun in particular has lots of IR in its light spectrum, and that has to be rejected. They have to be able to handle running into and out of shadows.
  • They can detect your stride +/- 10% if constant, or you can train it to get to +/- 5%. They can interpret transitions between walking and running.

As a “running” app with an accelerometer, it might be tempting to think of this as a navigation thing that it’s detecting, but it’s not; it’s interpreting the bumping around as you bounce with each step. It knows how many steps you took; it has no idea where those steps went.

They don’t make the end products themselves; they license the technology to audio/headset makers for integration into their systems, whether wired or wireless (e.g., Bluetooth). You can find more at their website.

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

nanoPower Module Extends Battery Life in Space-Constrained Applications

Sponsored by Analog Devices

Designers can now increase battery life and reduce size in space-constrained IoT devices with a power module that features the lowest quiescent current compared to competitive solutions and uSLIC built-in inductor technology that reduces solution size by up to 37%.

Read Now

featured chalk talk

ROHM Automotive LED Driver IC

Sponsored by Mouser Electronics and ROHM Semiconductor

There has been a lot of innovation in the world of automotive designs over the last several years and this innovation also includes the LED lights at the rear of our vehicles. In this episode of Chalk Talk, Amelia Dalton chats with Nick Ikuta from ROHM Semiconductor about ROHM’s automotive LED driver ICs. They take a closer look at why their four channel outputs, energy sharing function, and integrated protection functions make these new driver ICs a great solution for rear lamp design.

Click here for more information about ROHM Semiconductor Automotive Lighting Solutions