editor's blog
Subscribe Now

You Put That Where??

Wearable electronics is the coming thing, and fitness-related gear is the most obvious thing to wear. And CES had a huge section dedicated to these semi-health devices. “Semi” because it’s this nice cozy niche where you can do things that affect your health with no required FDA approval.

But the scale of integration is pretty astounding. One example was a company called Valencell that has designed sensors that fit into an earbud. Actually, it’s more than just the sensor – there’s a lot of computing that goes on in that little thing that still has to be comfortable to wear (which was a challenge for them).

First, they have an IR emitter and detector that senses heart rate. Then they have an accelerometer to estimate pace, distance, and step rate. All of this information can be used to estimate oxygen and calories burned.

The sensors interact with your phone, but they don’t rely on the phone to do all the work: there’s also a DSP in the headset that processes the sensor data. What the phone gets is the final result for display to the runner.

Some of the challenges – in addition to the simple issues of size and comfort – included:

  • Resting heart rate is pretty straightforward to detect, but when running, there’s so much noise that it’s hard to reject the extraneous artifacts.
  • Indoor and outdoor light profiles are very different; the system has to handle both. The sun in particular has lots of IR in its light spectrum, and that has to be rejected. They have to be able to handle running into and out of shadows.
  • They can detect your stride +/- 10% if constant, or you can train it to get to +/- 5%. They can interpret transitions between walking and running.

As a “running” app with an accelerometer, it might be tempting to think of this as a navigation thing that it’s detecting, but it’s not; it’s interpreting the bumping around as you bounce with each step. It knows how many steps you took; it has no idea where those steps went.

They don’t make the end products themselves; they license the technology to audio/headset makers for integration into their systems, whether wired or wireless (e.g., Bluetooth). You can find more at their website.

Leave a Reply

featured blogs
Nov 23, 2022
The current challenge in custom/mixed-signal design is to have a fast and silicon-accurate methodology. In this blog series, we are exploring the Custom IC Design Flow and Methodology stages. This methodology directly addresses the primary challenge of predictability in creat...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 21, 2022
By Hossam Sarhan With the growing complexity of system-on-chip designs and technology scaling, multiple power domains are needed to optimize… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

MOTIX™ Motor Control Solutions

Sponsored by Mouser Electronics and Infineon

Today’s complex automotive designs require a wide range of motor control and system ICs to deliver the features that customers demand. In this episode of Chalk Talk, Michael Williams from Infineon joins me to explore how Infineon’s MOTIX™ motor control solutions can help simplify your next automotive design. We take a closer look at the MOTIX™ Embedded power system on chip for motor control, the benefits that the MOTIX™ Embedded Power IC can bring to your next design, and how you can get started with your next motor control design with Infineon’s MOTIX™ motor control solutions.

Click here for more information about Infineon Technologies TLE986x 2-Phase Motor/Relay Driver ICs