editor's blog
Subscribe Now

Do IMU-Based Remotes Work?

One of the booths I stopped by at CES was Philips, who was demonstrating their uWand. Turns out, this isn’t that new a product, having been introduced in 2009-10 (clearly I wasn’t paying attention then). In their view, the market is only now catching up to this kind of technology, as is clear with the variety of Smart TV and gaming remotes being designed and marketed.

The uWand uses a different approach than some of the other devices, which tend to be either IMU-based or regular-camera-based. The uWand relies on an IR camera in the remote, which tracks a row of 1 or more IR LEDs at the bottom of the TV screen (more LEDs providing better range and angle). In the discussion, the comparison was often made to benefits as compared to a gyroscope-based solution because gyroscopes are known to drift.

So I asked about compensated systems, where a magnetometer is used to correct for gyro drift. And another gentleman came by and flatly said that it doesn’t work. I tried to push and pull a bit; yes, magnetic anomalies complicate matters, but in a living room, you likely have a fixed set of magnetic artifacts, for the most part, so you’d think that they would be seen as a “common mode” artifact and be subject to removal. And sensor fusion is getting pretty good these days. And I’ve seen demonstrations of IMU-based remotes that seem to have good response.

Then again, I’ve never used one for a long period of time, so perhaps after an hour or two (more? less?) they need refreshing to work again. And I have seen some that need the figure-8 calibration. But, given the absolute nature of the, “It doesn’t work” declaration, I feel the need to toss the question out for discussion.

To be clear, the question is not, “Which is better, uWand or IMU-based?” The question is, “For the purposes of TV remotes, can an IMU-based system using suitable sensor fusion be made to work to the level that would satisfy a consumer?”

What say you?

Leave a Reply

featured blogs
Dec 6, 2022
Join our live webinar next Tuesday to learn more about this subject. Introduction Despite the evolution of computer processing capability, improving the efficiency of numerical simulations remains critical. In CFD simulations, the key factor impacting solution quality is mesh...
Dec 6, 2022
Explore quantum computing's impact on cryptography and learn how to prepare SoC designs for post-quantum computing and evolving cryptographic standards. The post Why Now Is the Time to Address Quantum Computing's Impact on Cryptography appeared first on From Silicon To Softw...
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Unique AMS Emulation Technology

Sponsored by Synopsys

Learn about Synopsys' collaboration with DARPA and other partners to develop a one-of-a-kind, high-performance AMS silicon verification capability. Please watch the video interview or read it online.

Read the interview online:

featured chalk talk

224 Gbps Data Rates: Separating Fact from Fiction

Sponsored by Samtec

Data rates are getting faster with each passing year. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns from Samtec to separate fact from fiction when it comes to 224 Gbps data rates. They take a closer look at the design challenges, the tradeoffs, and architectural decisions that we will need to consider when designing a 224 Gbps design. They also investigate the variety of interconnect solutions that Samtec offers for your next 224 Gbps design.

Click here for more information about Silicon-to-Silicon Application Solutions from Samtec