editor's blog
Subscribe Now

Do IMU-Based Remotes Work?

One of the booths I stopped by at CES was Philips, who was demonstrating their uWand. Turns out, this isn’t that new a product, having been introduced in 2009-10 (clearly I wasn’t paying attention then). In their view, the market is only now catching up to this kind of technology, as is clear with the variety of Smart TV and gaming remotes being designed and marketed.

The uWand uses a different approach than some of the other devices, which tend to be either IMU-based or regular-camera-based. The uWand relies on an IR camera in the remote, which tracks a row of 1 or more IR LEDs at the bottom of the TV screen (more LEDs providing better range and angle). In the discussion, the comparison was often made to benefits as compared to a gyroscope-based solution because gyroscopes are known to drift.

So I asked about compensated systems, where a magnetometer is used to correct for gyro drift. And another gentleman came by and flatly said that it doesn’t work. I tried to push and pull a bit; yes, magnetic anomalies complicate matters, but in a living room, you likely have a fixed set of magnetic artifacts, for the most part, so you’d think that they would be seen as a “common mode” artifact and be subject to removal. And sensor fusion is getting pretty good these days. And I’ve seen demonstrations of IMU-based remotes that seem to have good response.

Then again, I’ve never used one for a long period of time, so perhaps after an hour or two (more? less?) they need refreshing to work again. And I have seen some that need the figure-8 calibration. But, given the absolute nature of the, “It doesn’t work” declaration, I feel the need to toss the question out for discussion.

To be clear, the question is not, “Which is better, uWand or IMU-based?” The question is, “For the purposes of TV remotes, can an IMU-based system using suitable sensor fusion be made to work to the level that would satisfy a consumer?”

What say you?

Leave a Reply

featured blogs
Jan 17, 2020
I once met Steve Wozniak, or he once met me (it's hard to remember the nitty-gritty details)....
Jan 17, 2020
[From the last episode: We saw how virtual memory helps resolve the differences between where a compiler thinks things will go in memory and the real memories in a real system.] We'€™ve talked a lot about memory '€“ different kinds of memory, cache memory, heap memory, vi...
Jan 16, 2020
While Samtec started as a connector company with a focus on two-piece, pin-and-socket board stacking systems, High-Speed Board Stacking connectors and High-Speed Cable Assemblies now make up a significant portion of our sales. To support development in this area, in December ...
Jan 16, 2020
Betting on Hydrogen-Powered Cars On-demand DRC within P&R cuts closure time in half for MaxLinear Functional Safety Verification For AV SoC Designs Accelerated With Advanced Tools Automating the pain out of clock domain crossing verification Mentor unpacks LVS and LVL iss...

Featured Video

RedFit IDC SKEDD Connector

Sponsored by Wurth Electronics and Mouser Electronics

Why attach a header connector to your PCB when you really don’t need one? If you’re plugging a ribbon cable into your board, particularly for a limited-use function such as provisioning, diagnostics, or testing, it can be costly and clunky to add a header connector to your BOM, and introduce yet another component to pick and place. Wouldn’t it be great if you could plug directly into your board with no connector required on the PCB side? In this episode of Chalk Talk, Amelia Dalton chats with Ben Arden from Wurth Electronics about Redfit, a slick new connector solution that plugs directly into standard via holes on your PCB.

Click here for more information about Wurth Electronics REDFIT IDC SKEDD Connector