editor's blog
Subscribe Now

An Easier-To-Build Unreleased Oscillator

MEMS technology is providing new ways to generate reliable frequencies that conventionally require bulky LC tanks and crystals. Granted, it’s early days (as other monolithic ideas are commercialized), but research proceeds apace, with bulk acoustic wave (BAW) technology now being added to the use of actual mechanical moving parts as candidates for commercialization.

The challenge with an approach requiring a moving part can be summed up in one word: release. While release is required for most MEMS, it’s always extra work to do, and avoiding it is tempting. The alternative to a moving mass is the use of waves transported in a solid, which is the BAW approach. The simplest such device involves two reflectors, top and bottom, but that involves back- and front-side etching.

So-called Bragg reflectors* eliminate the need for so-called “free surface” reflectors by using an sequence of two materials with different acoustic velocities. You typically have them alternating at quarter-wavelength distances, and, if you have enough layers, it acts like a reflector. This can be used at the bottom, for instance, to eliminate the need for all the backside work to get a “real” reflector in there. This is built using alternating thin films in a stack.

In that configuration, the waves travel vertically; there have also been attempts to do this laterally, some of which have challenges and some of which still require release. But a paper at IEDM takes a slightly different approach, using deep-trench capacitors to create the Bragg reflectors and the drive and sense elements.

The good news is that the spacing of the trenches can establish the frequency – that is, lithography provides flexible target frequency design (as opposed to having to rely on a deposited film thickness or etch depth). However, quality is somewhat traded off for manufacturability in that the spacing doesn’t necessarily follow the ideal quarter-wavelength target.

The other piece of good news is, of course, that the manufacturing steps are common for creating shallow-trench isolation (STI) on ICs. (I know, there’s the obvious question: make up your mind, is it deep trench or shallow trench? I guess that, by capacitor standards, it’s a deep trench; by isolation standards, it’s a shallow trench.)

Despite this tradeoff, the researchers claimed that their 3.3-GHz resonator, built on an IBM 32-nm SOI technology, approached the performance of similar suspended-mass resonators. If you have the IEDM proceedings, you can find the details in paper # 15.1.

 

*If you’re unfamiliar with Acoustic Bragg Reflectors, as I was, and want to Google it, be aware… most useful information appears to be locked behind the infamous pay walls. There were some bits and pieces I could salvage, but apparently such knowledge isn’t for us, the hoi polloi…

Leave a Reply

featured blogs
Jan 22, 2021
Amidst an ongoing worldwide pandemic, Samtec continues to connect with our communities. As a digital technology company, we understand the challenges and how uncertain times have been for everyone. In early 2020, Samtec Cares suspended its normal grant cycle and concentrated ...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 22, 2021
This is my second post about this year's CES. The first was Consumer Electronics Show 2021: GM, Intel . AMD The second day of CES opened with Lisa Su, AMD's CEO, presenting. AMD announced new... [[ Click on the title to access the full blog on the Cadence Community...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

Featured Chalk Talk

Nano Pulse Control Clears Issues in the Automotive and Industrial Markets

Sponsored by Mouser Electronics and ROHM Semiconductor

In EV and industrial applications, converting from high voltages on the power side to low voltages on the electronics side poses a big challenge. In order to convert big voltage drops efficiently, you need very narrow pulse widths. In this episode of Chalk Talk, Amelia Dalton chats with Satya Dixit from ROHM about new Nano Pulse Control technology that changes the game in DC to DC conversion.

More information about ROHM Semiconductor BD9V10xMUF Buck Converters