editor's blog
Subscribe Now

Molly to the Rescue

Graphene has excited technologists for years now, with its promise of high mobility, strength, and flexibility. Except for one big problem: no bandgap. So you can’t really turn off your devices.

Out of left field, then, comes something completely different at IEDM: MoS2. Deposited using CVD over a large area, a single layer configures itself as a layer of molybdenum sandwiched between two layers of sulfur. It’s flexible, it has high mobility – and it has a 1.8-V bandgap.

A team from MIT, the US Army Research Lab, and the Institute of Atomic and Molecular Sciences in Taiwan not only demonstrated the basic electrical capabilities of the material, but actually built devices, both analog (including current sources and ADCs) and digital (a depletion-mode NAND gate).

This actually competes less with small-scale circuitry and more with large-area flexible circuits, which typically utilize relatively poorly-performing materials like amorphous silicon and organics. Mobility in such devices can be less than 10 cm2/Vs. The MoS2 material achieved higher than 190 cm2/Vs, with an on-off current ratio greater than 106 and current density close to 20 µA/µm, with excellent current saturation characteristics. And the circuits worked.

For those of you with the IEDM proceedings, you can find out more in paper 4.6.

Leave a Reply

featured blogs
Jul 1, 2025
I don't know which of these videos is better: humans playing games with water pixels or robots playing games....

Libby's Lab

Libby's Lab - Scopes out Eaton EHBSA Aluminum Organic Polymer Capacitors

Sponsored by Mouser Electronics and Eaton

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Eaton EHBSA Aluminum Organic Polymer Capacitors, available at Mouser.com! These capacitors are ideal for high-reliability and long life in demanding applications. Keep your circuits charged and your ideas sparking!

Click here for more information

featured paper

Maximize Power Efficiency in Embedded Applications with Agilex™ 5 E-Series FPGAs and SoCs Memory Solutions

Sponsored by Altera

Learn how Altera Agilex™ 5 FPGAs and SoCs deliver up to 1.9× lower system power than Zynq UltraScale+ without sacrificing performance. This white paper dives into real benchmark data, memory interface efficiency, and architectural advantages that make Agilex 5 the smart choice for embedded, vision, and AI edge applications. Optimize for power, performance, and design simplicity.

Click to read more

featured chalk talk

High Power Charging Inlets
All major truck and bus OEMs will be launching electric vehicle platforms within the next few years and in order to keep pace with on-highway and off-highway EV innovation, our charging inlets must also provide the voltage, current and charging requirements needed for these vehicles. In this episode of Chalk Talk, Amelia Dalton and Drew Reetz from TE Connectivity investigate charging inlet design considerations for the next generation of industrial and commercial transportation, the differences between AC only charging and fast charge and high power charging inlets, and the benefits that TE Connectivity’s ICT high power charging inlets bring to these kinds of designs.
Aug 30, 2024
36,220 views