editor's blog
Subscribe Now

Nanowire Advancements

Nanowires are a perennial IEDM topic, and this year was no exception. Three papers in particular were identified as standing out.

One of them relates to efforts to work germanium into the mix for pFETs. Such work is all about mobility, and a team from MIT achieved twice the mobility of biaxially-strained planar Si. This was done using biaxially-strained germanium that was then patterned into wires using e-beam lithography, which relaxed the lateral strain. The result wasn’t uniaxial strain, but asymmetric. HfO2 was used as the high-κ dielectric, which also acted as an etch-stop when the nanowires are being formed as well as passivation for the Ge/dielectric interface.

A team at Purdue, meanwhile, investigated III-V nanowires for nFETs using InGaAs. They used 20-nm nanowires that were actually a sandwich of In0.53Ga0.47As between In0.65Ga0.35As for higher mobility and lower interface defect density.

They ran three different gate stacks. Two of them used 0.5 nm Al2O3 and 4 nm LaAlO3, with one reversing the order of the stack as compared to the other; this was surrounded by WN. The EOT* of these was 1.2 nm. The other “stack” was simply 3.5 nm of Al2O3 (andthe WN); it had an EOT of 1.7 nm.

The resulting structures exhibited a subthreshold slope (SS) of 63 mV/dec and DIBL of 7 mV/V; Ion was a strong 0.63 mA/µm and gm was 1.74 mS/µm. The SS and gm are the best yet reported; short-channel effects were negligible.

Finally, a team at the Swiss Federal Institute of Technology in Lausanne (EPFL) experimented with ambipolar nanowire structures – devices that can be switched in real time to behave as n-type or p-type. While seen as an annoyance conventionally, this project leveraged the phenomenon by creating a “stack” of four nanowires vertically (using DRIE) and then forming two gates. In the center of the wire was the “standard” control gate; contacting both ends near the source and drain was the polarity gate.

The critical thing about this was that the voltages used to control the two gates were roughly the same. This creates the potential for using both gates in logic designs, the natural function being the XOR gate (with echoes of using MRAM cells as XOR gates). It’s suggested that using XOR gates instead of inverters/NAND/NOR gates can reduce the resources required, although obviously the basic logic math changes due to the different primitive function.

If you have the proceedings, the MIT paper is #16.5; the Purdue paper is #27.6, and the EPFL paper is #8.4. (Yeah, I know, all different sessions… how things get grouped at IEDM remains a mystery to me, but it seems to work for them…)


*EOT is “equivalent oxide thickness.” The whole idea of high-κ materials is to provide the “reactivity,” if you will, of a super-thin layer of SiO2 without all the electrons tunneling through because it’s so thin. So you get a thicker layer of material that acts like a layer of SiO2 having a thinner EOT. So this allows the thicknesses of different materials to be “normalized” to SiO2-equivalent thicknesses.

Leave a Reply

featured blogs
Jul 1, 2022
We all look for 100% perfection and want to turn our dreams (expectations) into reality as far as we can. Are you also looking for a magic wand to turn expectation into reality? The story applies to... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Demo: Achronix Speedster7t 2D NoC vs. Traditional FPGA Routing

Sponsored by Achronix

This demonstration compares an FPGA design utilizing Achronix Speedster7t 2D Network on Chip (NoC) for routing signals with the FPGA device, versus using traditional FPGA routing. The 2D NoC provides a 40% reduction in logic resources required with 40% less compile time needed versus using traditional FPGA routing. Speedster7t FPGAs are optimized for high-bandwidth workloads and eliminate the performance bottlenecks associated with traditional FPGAs.

Subscribe to Achronix's YouTube channel for the latest videos on how to accelerate your data using FPGAs and eFPGA IP

featured paper

Addressing high-voltage design challenges with reliable and affordable isolation tech

Sponsored by Texas Instruments

Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.

Click to read more

featured chalk talk

i.MX RT1170

Sponsored by Mouser Electronics and NXP Semiconductors

Dual Core microcontrollers can bring a lot of benefits to today’s modern embedded designs in order to keep all of our design requirements in balance. In this episode of Chalk Talk, Amelia Dalton chats with Patrick Kennedy from NXP about why newer design requirements for today’s connected embedded systems are making this balancing act even harder than ever before and how the i.MX RT1170 can help solve these problems with its heterogeneous dual cores, MIPI interface, multi-core low power strategy and SRAM PUF technology can make all the difference in your next embedded design.

Click here for More information about NXP Semiconductors i.MX RT1170 crossover microcontrollers