editor's blog
Subscribe Now

From Relative to Absolute Altitude

GPS is notoriously inaccurate when it comes to vertical positioning. And it disappears entirely inside buildings. So pressure sensors are used to help calculate vertical positioning.

The thing is, a pressure sensor decides your altitude based on the pressure of the air, so it must be comparing it to some baseline. The problem with that is that there is no firm baseline pressure: weather, as we all know, affects the air pressure.

That means that pressure is, first of all, a moving target. Secondly, we can never really know our absolute altitude, only relative.

I posed these questions in a conversation with the Bosch Sensortec team at the MEMS Executive Congress where they were discussing the upcoming release of their new pressure sensors. They talk about being able to handle absolute altitude, so the obvious question is, what about the weather?

There are two pieces to the answer. The first deals with the fact that the baseline pressure isn’t constant. However, compared to pressure changes due to typical motion, the weather pressure changes extremely slowly. (If it’s changing so fast that it could be confused with you moving around, then navigation error is the least of your problems.) From a signal standpoint, the pressure changes of interest can be extracted with a high-pass filter, at least conceptually. More simply, you can think of it as a differential-mode measurement, with actual weather pressure being a common-mode error that’s subtracted out.

That allows you to get a reasonably accurate measure of relative altitude, but what about absolute altitude? Now you need to compare yourself to a sea-level baseline, and that baseline does depend on the weather. Well, there’s no magic available on this. The Bosch Sensortec software can get the data necessary to correct for the current sea-level pressure from the internet. Given that external sanity check, a pressure sensor can provide absolute altitude.

There are a couple other “faster-twitch” effects that can confuse pressure interpretation. The first is simply the fact that some buildings or rooms may have higher or lower air pressure based on the air conditioning or intentional implementation of things like positive pressure for a clean room. Even just opening a door can send a pressure surge. These effects won’t be eliminated or “de-convoluted” in the same way that weather impacts can be. Instead, the pressure data must be fused with other data to decide whether the pressure change reflects a change in altitude. Specifically, if an inertial sensor shows no vertical motion, then the pressure change can be “ignored” (although now it becomes the new baseline).

Pressure measurements also depend on temperature: a local temperature change can register as a pressure change when in fact the pressure didn’t change. Good temperature compensation is required (which is essentially data fusion between a thermometer and a pressure sensor); a pressure sensor less affected by temperature (as is claimed by Bosch Sensortec for their new BMP280) can also help.

Leave a Reply

featured blogs
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...
Apr 30, 2024
Analog IC design engineers need breakthrough technologies & chip design tools to solve modern challenges; learn more from our analog design panel at SNUG 2024.The post Why Analog Design Challenges Need Breakthrough Technologies appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

PolarFire® SoC FPGAs: Integrate Linux® in Your Edge Nodes
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Amelia Dalton and Diptesh Nandi from Microchip examine the benefits of PolarFire SoC FPGAs for edge computing applications. They explore how the RISC-V-based Architecture, asymmetrical multi-processing, and Linux-based reference solutions make these SoC FPGAs a game changer for edge computing applications.
Feb 6, 2024
12,302 views