editor's blog
Subscribe Now

Fusing the Little Details

It’s always struck me that there seem to be two critical elements to sensor fusion. There’s the part that can be resolved with math – for instance, compensating a magnetometer reading to account for the tilt as measured by an accelerometer – and then there’s the heuristic part. The latter deals with, for example, deciding that your gyro reading makes no sense and deferring to the compass instead to give you a heading. And while the math in the first part is more or less universal for all players, the heuristics would provide more of an opportunity for differentiation.

In a conversation at the recent MEMS Executive Congress, Movea’s Bryan Hoadley noted that there’s actually more to it than that. First of all, I should note that they’re touting the phrase “data fusion” rather than just “simple” sensor fusion. That would partly be due to the fact that they’re trying to raise the level of abstraction far above simple low-level fusion (as indicated by their periodic table and the fact that they’re doing analysis on running gaits and tennis serves), but also because, in many cases, data is included that doesn’t come from a sensor.

The classic example of that would be a navigation algorithm that not only uses IMU data, but also GPS or even speedometer data. (OK, I guess a speedometer is a sensor, albeit a pedestrian one… or… wait, no, a pedometer would be pedestrian… GPS? That’s less obvious.) Add map data and now you’re unquestionably fusing more than sensor data. You’re fusing data, some of which comes from sensors.

There’s one other element that comes along with this, according to Mr. Hoadley. It may sound trivial or inconsequential, but it matters, and it’s kind of like taking a look back into the kitchen of your favorite gourmet restaurant: it’s way less glamorous than the dining room. In addition to the math and the heuristics are the logistics of managing all the data and the data formats correctly and efficiently.

(Reminds me of the college programming project where I took the core assignment and simply added some I/O to it that wasn’t required. A couple ill-conceived all-nighters later and my code was 10% algorithmic stuff that mattered and 90% crap for getting data in and out. Which was worth, like, 3% extra in bonus credit. My first lesson in ROI.)

The point being, there’s more to the cooking than creating pretty stacks of elegant food (which will topple when the first fork hits it); there’s lots of boring, mundane food prep.

I’ve actually asked the question before as to whether these data formats could be simplified by any sorts of standards or unification; it’s one area where there doesn’t seem to be enough pain to worry. Either that, or the early movers have already solved the problem themselves and the chaos now acts as an entry barrier to others.

Leave a Reply

featured blogs
Nov 23, 2022
The current challenge in custom/mixed-signal design is to have a fast and silicon-accurate methodology. In this blog series, we are exploring the Custom IC Design Flow and Methodology stages. This methodology directly addresses the primary challenge of predictability in creat...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 21, 2022
By Hossam Sarhan With the growing complexity of system-on-chip designs and technology scaling, multiple power domains are needed to optimize… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

Traction Inverter

Sponsored by Infineon

Not only are traction inverters integral parts of an electric drive train and vital to the vehicle motion, but they can also make a big difference when it comes to the energy efficiency and functional safety of electric vehicles. In this episode of Chalk Talk, Amelia Dalton chats with Mathew Anil from Infineon about the variety of roles that traction inverters play battery electric vehicles, how silicon carbide technology in traction inverters can reduce the size of electric car batteries and how traction inverters can also help with cost reduction, functional safety and more.

Click here for more information about Automotive IGBT & CoolSiC™ MOSFET Modules