editor's blog
Subscribe Now

The OS is the Standard

There are two widespread myths in the MEMS world. Or so said ST’s Benedetto Vigna, EVP and GM of ST Micro’s Analog, MEMS, and Sensor group, at the recent MEMS Executive Congress.

The first, the primary topic of this note, is that MEMS needs standards. In fact, there has been a hue and cry for MEMS standards for a while now, although there’s less clarity on exactly what needs to be standardized. Discussions are ongoing (and we’ll look more deeply at this in an upcoming article), but it would seem that, while that happens, ST is pretty convinced that things are just fine as they are.

This gets to the central question of who benefits from standards. Ideally, when done right, the customers benefit, the market grows or becomes more efficient, and there is more business to chase for all players. But sometimes, for a given company, it may feel that standards will simply benefit the competition.

While not stated in those terms, it could be inferred that ST, being a dominant IDM in the MEMS world, sees standards doing more of the latter than the former. As Benedetto explains it, the only real standard needed in order to make users’ lives easier is the API. And that happens at the OS level. And while the sensor details burble along far below that level, enough low-level stackware should be built to allow users to work at the OS level. Nothing else matters.

This means, of course, that he sees ST capable of meeting all of these customer needs on their own. Certainly as a large company with established success and control over their own production, they’ve got (or can make available) the resources to do this, and presumably they view that as a competitive advantage. And it probably is.

Unstated, but perhaps implied (or at least easily inferred), is the position, “We’ll simply make everything the customer needs, they’ll buy everything from us, and no one else will matter. So standards will be irrelevant.” They’re filling out what he calls the “five fingers” of the MEMS UI: accelerometers, gyroscopes, magnetometers, pressure sensors, and microphones. From this standpoint, if they’ve got all this covered, then it’s a done deal.

Separately, he noted the second myth – and it could be said to be related: Improved EDA tools are important for designing the transducers. While we won’t dig into this one here, it could also be perceived as a natural position to take when you’re a big guy with a long history and lots of internal processes, tools, and experience under your belt. Better EDA tools then only make things easier for the competition.

It’s always a tough timing call when you’re a big player with an early lead. For a while, you can operate like you’re alone in the market. In fact, in the early days, you more or less are. During that phase, you can resist calls for you to do things to make life easier for the newcomers. In the perfect world, those newcomers would dissolve away and you’d be back in charge of the market.

That rarely happens, of course, so there’s that delicate decision to make as to when to move into a more conciliatory position. From a practical standpoint, that’s when you shift from ignoring or even blocking the standards efforts to working on them to minimize damage.

At this point, of course, I’m completely putting words into their mouths – they’ve said nothing about these last points specifically. I’m pulling this from my own experience with standards many years ago. But it will be interesting to see how they and the other big MEMS IDMs jockey around as standards efforts coalesce.

Leave a Reply

featured blogs
Sep 27, 2020
https://youtu.be/EUDdGqdmTUU Made in "the Alps" Monday: Complete RF Solution: Think Outside the Chip Tuesday: The First Decade of RISC-V: A Worldwide Phenomenon Wednesday: The European... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

AI SoC Chats: IP for In-Memory / Near-Memory Compute

Sponsored by Synopsys

AI chipsets are data hungry and have high compute intensity, leading to potential power consumption issues. Join Synopsys Fellow Jamil Kawa to learn how in-memory or near-memory compute, 3D stacking, and other innovations can address the challenges of making chips think like the human brain.

Click here for more information about DesignWare IP for Amazing AI

Featured Paper

Designing highly efficient, powerful and fast EV charging stations

Sponsored by Texas Instruments

Scaling the necessary power for fast EV charging stations can be challenging. One solution is to use modular power converters stacked in parallel.

Learn More in our technical article

Featured Chalk Talk

Wide Band Gap: Silicon Carbide

Sponsored by Mouser Electronics and ON Semiconductor

Wide bandgap materials such as silicon carbide are revolutionizing the power industry. From electric vehicles and charging stations to solar power to industrial power supplies, wide bandgap brings efficiency, improved thermal performance, size reduction, and more. In this episode of Chalk Talk, Amelia Dalton chats with Brandon Becker from ON Semiconductor about the advantages of silicon carbide diodes and MOSFETs.

Click here for more information about ON Semiconductor Wide Bandgap SiC Devices