editor's blog
Subscribe Now

Power Hungry

A keynote at the recent MEMS Executive Congress by TI’s Ajith Amerasekera discussed, among other things, power and battery requirements for handling our increasingly digital, distributed world. The conclusion he came to – that there’s still lots that needs to be invented – isn’t particularly surprising, but some of the facts regarding how he got there caught my attention.

We talk about the cloud and the use of the internet to ship digital goods like movies as being an environmental boon – no nasty, soot-producing trucks rumbling around the countryside. Just nice, neat, clean bits traveling invisibly through the ether from their cloud to yours.

Well, if the cloud ever gets organized enough to secede from the Internet and become its own country, it will immediately register on the power meter: it would be the fifth largest energy consuming country behind the US, China, Russia, and Japan and just ahead of India, Germany, and Canada, which are more or less tied.

And that’s based on 2007 data.

And that DVD you have decided to forego in favor of digital streaming? It does have a bigger power footprint than the downloaded version, but not by nearly as much as you would think: only around 20% less.

The ways in which the energy is consumed are, of course, vastly different. When shipping by truck, it’s easiest to see the truck as the big power hog – but it’s actually the smallest slice of the stack. The big part is the actual DVD itself at about 70% of the overall power footprint. The paper sleeve is next, then the plastic case. Rounding things out are warehouse costs and, coming in last, the trucks. So the two most obvious consumers are the least significant.

For digital streaming, the big consumer is, of course, the server farm. Then internet routers, then home routers, and lastly, data storage. (And that’s assuming a simple path from the server to the home – clearly, the farther afield those bits have to roam en route, the more energy they require.) His point is partly that optimized streaming could cut that streaming footprint by over half. Those optimizations include sleeping, link-rate adaptation, rate adaptation, and dynamic voltage scaling.

For mobile – or perhaps better to say untethered devices (you can manually recharge a phone, but a remote wireless sensor: not so much) – he sees power consumption levels needing to go from 100s of µW today to around the 1 nW level for a 10-year device lifespan.

His major conclusion from all of this: lithium ions aren’t going to cut it; we need a new technology. They’ve taken us a long way from the NiCd and NiMH days, but they’re running out of big improvements. So something new is needed for the 2020s.

Energy harvesting has promise, of course, but the traditional sources we look to now range from 0.001 µW/cm3 for scavenging WiFi RF energy to around 100 mW/cm3 for using outdoor light. He says we need to look for non-traditional sources of energy, including biological and micro-fuel-cell approaches.

So as interesting as some of those data points are, it is fair to say that the conclusions aren’t news… we’ve got work to do.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

OPTIGA™ TPM SLB 9672 and SLB 9673 RPI Evaluation Boards
Sponsored by Mouser Electronics and Infineon
Security is a critical design concern for most electronic designs today, but finding the right security solution for your next design can be a complicated and time-consuming process. In this episode of Chalk Talk, Amelia Dalton and Andreas Fuchs from Infineon investigate how Infineon’s OPTIGA trusted platform module can not only help solve your security design concerns but also speed up your design process as well.
Jun 26, 2023
34,557 views