editor's blog
Subscribe Now

Another Magnetic Measurement

One of the fun things about the MEMS and sensors space is that there are often many ways of skinning the many proverbial cats. Magnetometers are one example.

When Bosch Sensortec introduced its BMC050 6-axis sensor last year, they made particular note of their FlipCore technology for detecting the strength of the earth’s (or any local) magnetic field. Detailed information, however, wasn’t readily available.

At the recent MEMS Executive Congress, I was able to talk with Bosch Sensortec’s Marcellino Gemelli to get the next level of understanding. And, in principle, it’s surprisingly straightforward. It simply relies on the familiar equation V=L di/dt.

They essentially build a transformer. One coil has a magnetic material in it, and they run a current through the coil; the secondary coil acts as the detector. The trick is that they periodically reverse the current through the primary coil. At the point where they reverse the current, you get a voltage spike in the secondary coil.

But the timing of that spike relates to the entire magnetic field, not just the one created by the primary. That includes the earth’s magnetic field (as well as any local “anomalies”). If the device is facing East/West, then the contribution from the earth’s field is orthogonal and has no impact; it has maximal impact if the device is facing North/South. The amount of that component delays (or advances) the voltage spike with respect to the time when the current in the primary coil was changed.

By measuring this phase shift in the output pulse train, they determine the heading of the device.

Of course, there are details with respect to calibration, and it has to be done in three axes, so the reality is somewhat more complicated than the theory, but they appear to have tamed it; they’re in production. With a 1000 microtesla field (which, I guess, would be 1 millitesla), they claim roughly 0.5 degree angular resolution.

The device itself combines the magnetometer with an accelerometer, which is essential for providing the tilt compensation necessary for an eCompass. You get acceleration data out of it as an additional bonus.

Leave a Reply

featured blogs
Jul 9, 2020
I just read '€œEmpty World'€ by John Christopher, and I'€™m sure you will be as amazed as I to discover that this book has a hint of a sniff of the post-apocalyptic about it....
Jul 9, 2020
It happens all the time. We'€™re online with a designer and we'€™re looking at a connector in our picture search. He says '€œI need a connector that looks just like this one, but '€¦'€ and then he goes on to explain something he needs that'€™s unique to his desig...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...

Featured Video

Product Update: New DesignWare® IOs

Sponsored by Synopsys

Join Faisal Goriawalla for an update on Synopsys’ DesignWare GPIO and Specialty IO IP, including LVDS, I2C and I3C. The IO portfolio is silicon-proven across a range of foundries and process nodes, and is ready for your next SoC design.

Click here for more information about DesignWare Embedded Memories, Logic Libraries and Test Videos

Featured Chalk Talk

Benefits of FPGAs & eFPGA IP in Futureproofing Compute Acceleration

Sponsored by Achronix

In the quest to accelerate and optimize today’s computing challenges such as AI inference, our system designs have to be flexible above all else. At the confluence of speed and flexibility are today’s new FPGAs and e-FPGA IP. In this episode of Chalk Talk, Amelia Dalton chats with Mike Fitton from Achronix about how to design systems to be both fast and future-proof using FPGA and e-FPGA technology.

Click here for more information about the Achronix Speedster7 FPGAs