editor's blog
Subscribe Now

Another Magnetic Measurement

One of the fun things about the MEMS and sensors space is that there are often many ways of skinning the many proverbial cats. Magnetometers are one example.

When Bosch Sensortec introduced its BMC050 6-axis sensor last year, they made particular note of their FlipCore technology for detecting the strength of the earth’s (or any local) magnetic field. Detailed information, however, wasn’t readily available.

At the recent MEMS Executive Congress, I was able to talk with Bosch Sensortec’s Marcellino Gemelli to get the next level of understanding. And, in principle, it’s surprisingly straightforward. It simply relies on the familiar equation V=L di/dt.

They essentially build a transformer. One coil has a magnetic material in it, and they run a current through the coil; the secondary coil acts as the detector. The trick is that they periodically reverse the current through the primary coil. At the point where they reverse the current, you get a voltage spike in the secondary coil.

But the timing of that spike relates to the entire magnetic field, not just the one created by the primary. That includes the earth’s magnetic field (as well as any local “anomalies”). If the device is facing East/West, then the contribution from the earth’s field is orthogonal and has no impact; it has maximal impact if the device is facing North/South. The amount of that component delays (or advances) the voltage spike with respect to the time when the current in the primary coil was changed.

By measuring this phase shift in the output pulse train, they determine the heading of the device.

Of course, there are details with respect to calibration, and it has to be done in three axes, so the reality is somewhat more complicated than the theory, but they appear to have tamed it; they’re in production. With a 1000 microtesla field (which, I guess, would be 1 millitesla), they claim roughly 0.5 degree angular resolution.

The device itself combines the magnetometer with an accelerometer, which is essential for providing the tilt compensation necessary for an eCompass. You get acceleration data out of it as an additional bonus.

Leave a Reply

featured blogs
Mar 24, 2023
With CadenceCONNECT CFD less than a month away, now is the time to make your travel plans to join us at the Santa Clara Convention Center on 19 April for our biggest CFD event of the year. As a bonus, CadenceCONNECT CFD is co-located with the first day of CadenceLIVE Silicon ...
Mar 23, 2023
Explore AI chip architecture and learn how AI's requirements and applications shape AI optimized hardware design across processors, memory chips, and more. The post Why AI Requires a New Chip Architecture appeared first on New Horizons for Chip Design....
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

Peltier Modules
Do you need precise temperature control? Does your application need to be cooled below ambient temperature? If you answered yes to either of these questions, a peltier module may be the best solution for you. In this episode of Chalk Talk, Amelia Dalton chats with Rex Hallock from CUI Devices about the limitations and unique benefits of peltier modules, how CUI Devices’ arcTEC™ structure can make a big difference when it comes to thermal stress and fatigue of peltier modules, and how you can get started using a peltier module in your next design.
Jan 3, 2023
11,172 views