editor's blog
Subscribe Now

Sensor Conditioning Options

One of the big challenges of MEMS sensor development is the fact that the raw sensor signals need to be conditioned before being read and acted on. This is done in the “ASIC” that ordinarily accompanies the sensor, typically on a separate die and co-packaged with the sensor (unless done on the same chip in a CMOS-friendly MEMS process). A well-known sensor design challenge is the fact that the ASIC has to be designed alongside the sensor, but that, until tools become more accurate, the actual sensor output isn’t known until the sensor has been built (and perhaps after a couple of design spins); that makes it very hard to co-design the ASIC and build it in parallel with the sensor.

Sensors are inherently analog devices, so it takes an analog front end to condition those signals – or at least convert them to digital for further digital processing. If you have a plain sensor with analog outputs and no encapsulated ASIC, then you have to build your own analog conditioning circuit.

Two companies are providing programmable conditioning circuits to avoid both the serial ASIC design issue and the need to build a discrete analog conditioning circuit. They allow a system designer to adjust the tuning of the conditioning network on the target board. This obviously has benefits over doing the manual circuit by hand, and it also means that any effect that the mounting or location of the sensor might have on the sensor output can be factored into the conditioning. Of course, as compared to a sensor with a co-packaged ASIC, it’s an additional chip and work.

Both Si-Ware and Renesas have such chips, Renesas’ recently announced. Si-Ware announced early last summer an actual development platform, the SWS61111, that features their own ASIC chip, the SWS1110. There’s also an FPGA on the board; the system allows a designer to determine the optimal conditioning configuration and then burn it into the ASIC, which has e-fuses for storing a one-time-programmable (OTP) setting.

Meanwhile, Renesas has announced its Smart Analog configurable conditioning circuit. It comes with its own graphic tool to enable tuning without requiring that you be an analog expert. There are two versions: one that it is intended to be paired with a microcontroller, and one that has the microcontroller co-packaged with the Smart Analog part. In both cases, the Smart Analog settings are stored in the microcontroller’s NVM.

You can find more in the earlier Si-Ware release or the more recent Renesas release.

Leave a Reply

featured blogs
May 24, 2024
Could these creepy crawly robo-critters be the first step on a slippery road to a robot uprising coupled with an insect uprising?...
May 23, 2024
We're investing in semiconductor workforce development programs in Latin America, including government and academic partnerships to foster engineering talent.The post Building the Semiconductor Workforce in Latin America appeared first on Chip Design....

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

Reliable Connections for Rugged Handling
Sponsored by Mouser Electronics and Amphenol
Materials handling is a growing market for electronic designs. In this episode of Chalk Talk, Amelia Dalton and Jordan Grupe from Amphenol Industrial explore the variety of connectivity solutions that Amphenol Industrial offers for materials handling designs. They also examine the DIN charging solutions that Amphenol Industrial offers and the specific applications where these connectors can be a great fit.
Dec 5, 2023
22,976 views