editor's blog
Subscribe Now

Higher-Density Solid-State Battery Technology

Last year we took a look at Infinite Power Solutions (IPS), one of a couple of companies that have commercialized a solid-state lithium ion battery technology licensed from Oak Ridge Labs. Their current offering (pun intended) focuses on thin, flexible cells. But they have just announced a new technology, and at this point, it’s only a technology; they haven’t released any information on how it will be productized (and they may still be figuring that out).

The upshot is what they claim to be record energy density: 1000 watt-hours per liter. This density for a 4-V rechargeable battery in a small size is a combination that they say doesn’t exist today – OK, well, it exists today, but not before this announcement. For comparison, cell phone batteries have around 400-500 Wh/l.

Unlike their existing micro-energy cells (MECs), which use thin films, these new high-energy cells (HECs) are thicker (1 mm), involve ceramics, and do include some organic materials – which they claim to be very “dead” or inert, like Teflon. In other words, they would still be safe to put in the trash.

The details of the chemistry haven’t been disclosed.

  • The anode in particular is secret – it becomes metallic when the battery is charged.
  • The electrolyte is a solid-state composite of polymers and inorganic materials.
  • The cathode is the same as used in the MEC (and possibly other batteries); the trick is how it’s deposited and… something else. A secret ingredient or step.

They say that it operates much like a hybrid metallic/ion battery. But because the electrolyte is a solid, not porous like standard cell phone batteries (because it needs to absorb the liquid electrolyte), it’s denser, contributing to the higher energy density. HECs, like the MECs, also lack the mechanism that proved over-dramatic in laptop batteries in the past – the risk of little metal shards plating out and shorting out the battery.

The charging will be a bit more complex than that of the MEC, but they’re trying to keep to the constant-voltage charging approach, which is simpler that the more traditional constant-current/constant-voltage process. They’re still working on endurance; they’re at 20 cycles now, moving to 50 (for reference, cell phone batteries are in the 500-800-cycle range, although the wear-out mechanisms are different). They are still evaluating whether they’ll be able to get to 200.

Of course, in an energy-harvesting application, where you discharge only a little and then trickle back up, the number of recharge cycles goes way up. A rule of thumb is that the cycles increase by the inverse of the depth of discharge (DoD). So if you get 50 cycles with 100% DoD (draining all the way), then you would get 1000 cycles with 5% DoD (20x).

They identify two other benefits of being solid state: long shelf life and the fact that the battery housing doesn’t need to deal with gases and vapors as a part of the charging/discharging process.

Today, IPS and Cymbet are the two companies that have made a go of the Oak Ridge technology. But they’ve addressed different spaces: IPS with thin, flexible cells less than 2.2 mAh; Cymbet with silicon-based, small (even bare-die) cells from 1 to 50 mAh. With this increase in density, using a technology that isn’t amenable to a flexible cell, it seems that IPS may start encroading on what has been Cymbet’s turf. In fact, they foresee 150-mAh cells.

But no date was given as to when the HEC technology will be productized. So we’ll keep an eye out for it.

You can get more details in IPS’s release.

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

ROHM Gate Drivers

Sponsored by Mouser Electronics and ROHM Semiconductor

Today’s rapid growth of power and motor control applications demands a fresh look at gate driver technology. Recent advances in gate drivers help designers hit new levels of efficiency and performance in their designs. In this episode of Chalk Talk, Amelia Dalton chats with Mitch Van Ochten of ROHM about the latest in isolated and non-isolated gate driver solutions.

Click here for more information about ROHM Semiconductor Automotive Gate Drivers