editor's blog
Subscribe Now

Using Formal to Help Simulation

While simulation is the granddaddy of verification, there are thorny problems that simulation doesn’t handle well, and formal analysis has gradually come of age over the years to attack those problems. So the two technologies end up working side by side on different issues to complete the verification plan.

While that is still largely true, Mentor has added a feature to their Questa verification platform to allow the formal part to help the simulation part. The formal part can help determine the simulation coverage; the feature is called CoverCheck.

The formal analysis engine can walk through the code and determine both unreachable code – you’ll simulate forever trying to reach that, with no improvement – and a sensitization path to hard-to-reach code. It’s essentially saying, “Don’t bother going here; you’re wasting your time. And for these other bits, here’s how you cover them.”

Unreachable code is dead code, and for some applications, dead code is verboten. Mission- and safety-critical design practices tend to require that every requirement be traceable to code and all code be traceable back to a requirement. So dead code, by definition, since it doesn’t do anything, can’t be tied to a requirement. While Mentor isn’t aware of anyone taking this next step yet, CoverCheck could be used to excise such code.

In addition, they’ve added a more classical formal feature called AutoCheck. It looks for common problems in the code (think “lint,” but different problems). Examples of the things it can verify are X-propagation, combinatorial loops, state machine deadlock, and overflow.

Both CoverCheck and AutoCheck are push-button automatic.

Finally, they announced performance improvements in their clock-domain crossing (CDC) formal capability.

You can find more in their release.

Leave a Reply

featured blogs
Apr 12, 2024
Like any software application or electronic gadget, software updates are crucial for Cadence OrCAD X and Allegro X applications as well. These software updates, often referred to as hotfixes, include support for new features and critical bug fixes made available to the users ...
Apr 11, 2024
See how Achronix used our physical verification tools to accelerate the SoC design and verification flow, boosting chip design productivity w/ cloud-based EDA.The post Achronix Achieves 5X Faster Physical Verification for Full SoC Within Budget with Synopsys Cloud appeared ...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Advanced Gate Drive for Motor Control
Sponsored by Infineon
Passing EMC testing, reducing power dissipation, and mitigating supply chain issues are crucial design concerns to keep in mind when it comes to motor control applications. In this episode of Chalk Talk, Amelia Dalton and Rick Browarski from Infineon explore the role that MOSFETs play in motor control design, the value that adaptive MOSFET control can have for motor control designs, and how Infineon can help you jump start your next motor control design.
Feb 6, 2024
9,465 views