editor's blog
Subscribe Now

Using Formal to Help Simulation

While simulation is the granddaddy of verification, there are thorny problems that simulation doesn’t handle well, and formal analysis has gradually come of age over the years to attack those problems. So the two technologies end up working side by side on different issues to complete the verification plan.

While that is still largely true, Mentor has added a feature to their Questa verification platform to allow the formal part to help the simulation part. The formal part can help determine the simulation coverage; the feature is called CoverCheck.

The formal analysis engine can walk through the code and determine both unreachable code – you’ll simulate forever trying to reach that, with no improvement – and a sensitization path to hard-to-reach code. It’s essentially saying, “Don’t bother going here; you’re wasting your time. And for these other bits, here’s how you cover them.”

Unreachable code is dead code, and for some applications, dead code is verboten. Mission- and safety-critical design practices tend to require that every requirement be traceable to code and all code be traceable back to a requirement. So dead code, by definition, since it doesn’t do anything, can’t be tied to a requirement. While Mentor isn’t aware of anyone taking this next step yet, CoverCheck could be used to excise such code.

In addition, they’ve added a more classical formal feature called AutoCheck. It looks for common problems in the code (think “lint,” but different problems). Examples of the things it can verify are X-propagation, combinatorial loops, state machine deadlock, and overflow.

Both CoverCheck and AutoCheck are push-button automatic.

Finally, they announced performance improvements in their clock-domain crossing (CDC) formal capability.

You can find more in their release.

Leave a Reply

featured blogs
Apr 11, 2021
https://youtu.be/D29rGqkkf80 Made in "Hawaii" (camera Ziyue Zhang) Monday: Dynamic Duo 2: The Sequel Tuesday: Gall's Law and Big Ball of Mud Wednesday: Benedict Evans on Tech in 2021... [[ Click on the title to access the full blog on the Cadence Community sit...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

Featured Chalk Talk

Keeping Your Linux Device Secure

Sponsored by Siemens Digital Industries Software

Embedded security is an ongoing process, not a one-time effort. Even after your design is shipped, security vulnerabilities are certain to be discovered - even in things like the operating system. In this episode of Chalk Talk, Amelia Dalton chats with Kathy Tufto from Mentor - a Siemens business, about how to make a plan to keep your Linux-based embedded design secure, and how to respond quickly when new vulnerabilities are discovered.

More information about Mentor Embedded Linux®