editor's blog
Subscribe Now

AMD and Other Peoples’ Technology

Today is all about acronyms: AMD, ARM, ATI, GloFo, and OPT. Haven’t heard of that last one? I just coined it, as “other peoples’ technology.” As in, AMD’s upcoming server chips won’t have a lot of AMD’s technology in them.

AMD announced today that it was becoming a full-fledged ARM licensee, with plans to make 64-bit ARM-based server chips by 2014. AMD isn’t giving up on x86; the company will offer both ARM- and x86-based server chips and let the customer decide which is better. Both flavors will include the on-chip network fabric that AMD acquired from SeaMicro a year ago, and some of chips will include graphics engines based on ATI’s popular Radeon architecture.

That’s swell, and probably a good strategic move for AMD. But I can’t help noticing that all of these gee-whiz features are somebody else’s technology. What, if anything, is AMD itself actually contributing?

The processor is ARM’s upcoming 64-bit “Atlas” design, because AMD chose not to take out an architectural license and design its own implementation. The graphics come from ATI, which AMD acquired a few years ago. The on-chip switch fabric comes from SeaMicro. And the silicon fabrication will be outsourced to GlobalFoundries and/or TSMC, two foundries in which AMD has invested in the past. In short, there’s no AMD-branded IP here. It’s an amalgamation of OPT: other peoples’ technology.

AMD calls this its “ambidextrous” strategy: ARM processors on the one hand, x86 processors on the other hand. Clever. And it’s a path that Intel certainly will not follow. But there are a half-dozen other CPU companies making ARM-based server chips, so AMD won’t have the market to itself. in fact, it’s kinda late. AMD will find itself competing with Marvell, Calxeda, Applied Micro, and others for the hot ARM-based server business. And AMD’s contribution to all this? Other peoples’ technology.

Leave a Reply

featured blogs
Apr 19, 2021
Cache coherency is not a new concept. Coherent architectures have existed for many generations of CPU and Interconnect designs. Verifying adherence to coherency rules in SoCs has always been one of... [[ Click on the title to access the full blog on the Cadence Community sit...
Apr 19, 2021
Samtec blog readers are used to hearing about high-performance design. However, we see an increase in intertest in power integrity (PI). PI grows more crucial with each design iteration, yet many engineers are just starting to understand PI. That raises an interesting questio...
Apr 15, 2021
Explore the history of FPGA prototyping in the SoC design/verification process and learn about HAPS-100, a new prototyping system for complex AI & HPC SoCs. The post Scaling FPGA-Based Prototyping to Meet Verification Demands of Complex SoCs appeared first on From Silic...
Apr 14, 2021
By Simon Favre If you're not using critical area analysis and design for manufacturing to… The post DFM: Still a really good thing to do! appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

Using the Graphical PMSM FOC Component in Harmony3

Sponsored by Mouser Electronics and Microchip

Developing embedded software, and particularly configuring your embedded system can be a major pain for development engineers. Getting all the drivers, middleware, and libraries you need set up and in the right place and working is a constant source of frustration. In this episode of Chak Talk, Amelia Dalton chats with Brett Novak of Microchip about Microchip’s MPLAB Harmony 3, with the MPLAB Harmony Configurator - an embedded development framework with a drag-and-drop GUI that makes configuration a snap.

Click here for more information about Microchip Technology MPLAB® X Integrated Development Environment (IDE)